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Abstract
We present a novel culling algorithm that uses
deforming non-collinear filters to improve the
performance of continuous collision detection
(CCD) algorithms. The underlying idea is to
use simple and effective filters, deforming non-
collinear filters (NCFs), that reduce the number
of false positives between the primitives. These
filters are derived from the collinear conditions
and can be easily combined with other culling
methods. We have tested its performance
on several benchmarks. Compared with pre-
vious methods, we can reduce the number
of false positives significantly and improve
the overall performance of CCD algorithms,
especially for simulations with large time steps.

Keywords: continuous collision detection,
deforming non-collinear filters, bounding
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1 Introduction

Continuous collision detection (CCD) is
widely used in physically-based simulation,
CAD/CAM, and robot motion planning [1, 2].
It can be used to compute the first-time-of-
contact between deforming triangles along
continuous trajectories. The CCD test between
two deforming triangles reduces to performing
9 vertex-face (VF) and 6 edge-edge (EE)
elementary tests. Each elementary test need to
compute the roots of a cubic equation.

∗Corresponding author. Email:tang m@zju.edu.cn.

Main Results: We present a novel culling algo-
rithm that can significantly reduce the number
of false positives in terms of elementary tests
and improve the overall performance of CCD
algorithms. We introduce new deforming non-
collinear filters (NCFs) which can remove many
false positives effectively. The main idea is to
exploit the collinear condition of the elementary
tests along the continuous deforming trajectory.
The NCFs can be used for culling of VF tests
and EE tests.

Our algorithm is complementary to prior
CCD algorithms and can be easily combined
with prior high-level and low-level culling al-
gorithms. We have tested its performance on
several complex benchmarks. The experiment
results show that the algorithm is well suited
for the deformable models with many self-
collisions and can cull up to 99% of false pos-
itives.
Organization: The rest of the paper is orga-
nized as follows: Section 2 gives a brief sur-
vey of related works. The notations and theo-
rems are introduced in Section 3. The deforming
non-collinear filter and overall CCD algorithm
will be described in Section 4. We compare our
method with prior algorithms in Section 5.

2 Related Works

Many efficient culling algorithms have been de-
signed for CCD between rigid models and de-
formable models. Their main purposes are to
reduce the number of the elementary tests, since
the exact VF and EE tests need to solve cubic



equations. Most of these culling algorithms ex-
ploit BVHs as the basic culling method, and
combine with other high-level and low-level
culling methods.

2.1 High-level Culling

High-level culling performs triangle-level over-
lap tests to reduce the potential collided pair-
wise set (PCS). Bounding volume hierarchies
(BVHs) have been widely used as high-level
culling methods. Some widely used bound-
ing volumes include spheres [3, 4], axis-aligned
bounding boxes (AABBs) [5], oriented bound-
ing boxes (OBBs) [6], discretely oriented poly-
topes (k-DOPs) [7], etc. In addition, several
culling methods aim at improving the culling
efficiency of self-collision detection, including
continuous normal cone tests [8], star-contour
tests [9], and subspace min-norm certification
tests [10]. Recently, some algorithms that ex-
ploit the parallel computing capability of mod-
ern multi-core CPUs or many-core GPUs have
been designed [11, 12, 13, 14].

2.2 Low-level Culling

Low-level culling is to remove redundant prim-
itive pairs (VF or EE pair) and reduce elemen-
tary tests from PCS. Recently, representative tri-
angles [15] and orphan sets [8] are proposed to
remove redundant primitive pairs. Continuous
separating axis theorem [16], deforming non-
penetration filter [17] and parallel filter in sub-
space [18] are proposed to reduce a large num-
ber of false positives. Even with all these culling
methods, the current CCD algorithms still result
in a high number of false positives.

3 Notations and Motivation

In this section, we introduce the notations used
and illustrate our motivation of the deforming
non-collinear filters (NCFs).

3.1 Notations

• Vertex, edge, and triangle are represented
by the symbols P , E and T , respectively.
We perform CCD at the time interval where
t ∈ [0, 1].
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Figure 1: Deforming non-penetration filters:
For a VF pair, if a vertex P is al-
ways on the same side of a triangle T
along the entire linear trajectory, this
pair should be culled. For an EE pair,
if there is no crossing between the two
deforming edges along the linear tra-
jectory, this pair should be culled.

• The position of each vertex between time
steps, is defined by a linear interpolation
function F (t). The positions of a specific
vertex, edge and triangle are denoted by
symbols Pt, Et, Tt for a certain time t
where t ∈ [0, 1].

• Symbols at, bt, ct are used to denote the
corresponding vertices of edges and trian-
gles at time t. atbt, btct, ctat are used to
denote the corresponding edges of the tri-
angle. nt is the normal vector of Tt.

• Operator ∗, ·, × denote multiplication of
a scalar and a vector, dot product of two
vectors, and cross product of two vectors,
respectively.

3.2 Motivation

The CCD test between a triangle pair can be re-
duced to two types of elementary tests: 6 VF
tests and 9 EE tests. Each elementary test can
be further broken down into two parts: a copla-
nar test and an inside test. Both the VF tests and
EE tests involve the use of four deforming ver-
tices, and a necessary condition for a collision



is that these four vertices are coplanar. Given
the linear interpolating motion between the ver-
tices, the coplanar test of four vertices can be
reduced to find roots of a cubic equation [19].
We use the Interval-Newton method to solve the
cubic equations [20], which takes 155 additions,
217 multiplications, and 6 divisions on average
(float-point operations). An inside test which
determines whether the colliding point is inside
a triangle (for VF tests) or inside both of the
edges (for EE tests), takes 9 additions, 28 multi-
plications, and 3 divisions on average.

The cost for elementary tests is very expen-
sive. Therefore, if the triangle pairs cannot be
culled by the bounding volume tests, we make
use of deforming non-penetration filter (DNF)
[17] for further culling: as shown in Fig. 1(b),
if vertex P is always on one side of triangle T
along the entire linear trajectory, this pair should
be classified as a false positive since it cannot
be coplanar. It is a sufficient condition to check
whether Pt will always be on the same side of Tt

during the time interval [0, 1]. If a pair of primi-
tives satisfies this condition, then it doesn’t need
to perform the exact test in terms of solving a
cubic equation. The EE tests have the same fea-
ture: if there is no crossing between the two de-
forming edges along the linear trajectory, they
cannot be coplanar during the time interval (Fig.
1(d)). However, DNF can become quite con-
servative for deformable models with large time
steps. Therefore, we propose a deforming non-
collinear filter to solve this problem.

We make use of the following observation: as
shown in Fig. 2(a), for VF test, in the orthog-
onal plane perpendicular to nt, if vertex Pt is
always on one side of an edge adjacent to the
triangle, and the triangle vertex not adjacent to
the edge is always on the other side of the edge,
this pair should be classified as a false positive.
The idea can be extended for EE test: in the or-
thogonal plane perpendicular to nt, if the two
vertices of one edge are always on the same side
of the other edge during the time interval [0, 1],
this pair should be classified as a false positive
(Fig. 2(b)). The above method can be summa-
rized as:

Theorem 1 (Projection Culling Theorem) At
any time interval, for some orthogonal projec-
tion, if there is no contact for two deforming

primitives in the projection space, there is no
contact between the two primitives in their
original space.

Proof. Assume that there is a cross between
two deforming primitives in their original space,
there must have a contact between the two de-
forming primitives in the orthogonal projection
plane, which is contrary to the assumption of
Theorem 1.

4 Deforming Non-collinear Filter

In this section, we present our culling algorithm
based on the Projection Culling Theorem. The
objective is to derive sufficient conditions for
non-overlap elements during the time interval.
We first present the collinear formulation for a
vertex P and an edge ab undergoing continuous
motion. Next, we extend it to perform VF and
EE culling tests.

4.1 Non-collinear Test

In order to check the collinearity of P and ab,
we need to calculate the projected distance be-
tween Pt and np, as shown in Fig. 2(a). If this
distance becomes zero at any time interval, then
the pair of the two primitives are classified as
collinearity. This method can be summarized as:

Theorem 2 (Non-collinear Theorem) For an
edge atbt and a vertex Pt defined by the start and
end positions during the interval [0, 1], these po-
sitions are linearly interpolated in the interval
with respect to the time variable. If the follow-
ing five scalar values: (P0− b0) ·A, (P0− b0) ·
(C+F )+(P1−b1)·A, (P0−b0)·(D+E)+(P1−
b1) ·(C+F ), (P0−b0) ·B+(P1−b1) ·(D+E)
and (P1−b1)·B have the same sign, Pt and atbt
will not be collinear during the interval, where

A = (b0 − a0)× n0, B = (b1 − a1)× n1,

C = (b0 − a0)× n̂,D = (b1 − a1)× n̂,

E = (b0 − a0)× n1, F = (b1 − a1)× n0,

and:

n0 = (b0 − a0)× (c0 − a0),

n1 = (b1 − a1)× (c1 − a1),



n̂ = n0 + n1 − (~vb − ~va)× (~vc − ~va),

~va = a1 − a0, ~vb = b1 − b0, ~vc = c1 − c0.

Proof. As shown in Fig. 2(a), the normal vector
nt of the deforming triangle at any time instance
t can be represented as follows:

nt = n0∗B2
0(t)+n̂∗1/2∗B2

1(t)+n1∗B2
2(t) (1)

where B2
i is the ith basis function of the Bern-

stein polynomials of degree 2.
For the vertices of the deforming triangle, we

make at = a0∗(1−t)+a1∗t and bt = b0∗(1−
t)+b1 ∗ t. In the orthogonal plane perpendicular
to nt, the normal vector np of edge atbt can be
represented as follows:

np = (bt − at)× nt

= ((b0 − a0) ∗ (1− t) + (b1 − a1) ∗ t)× nt

= A ∗B3
0(t) + (C + F ) ∗ 1/3 ∗B3

1(t) +

(D + E) ∗ 1/3 ∗B3
2(t) +B ∗B3

3(t) (2)

where B3
i is the ith basis function of the Bern-

stein polynomials of degree 3.
For the moving vertex Pt = P0∗(1−t)+P1∗t,

its projected distant along np is:

(Pt − bt) · np

= ((P0 − b0) ∗ (1− t) + (P1 − b1) ∗ t) · np

= (P0 − b0) ·A ∗B3
0 ∗ (1− t) +

(P0 − b0) · (C + F ) ∗ 1/3 ∗B3
1 ∗ (1− t) +

(P0 − b0) · (D + E) ∗ 1/3 ∗B3
2 ∗ (1− t) +

(P0 − b0) ·B ∗B3
3 ∗ (1− t) +

(P1 − b1) ·A ∗B3
0 ∗ t+

(P1 − b1) · (C + F ) ∗ 1/3 ∗B3
1 ∗ t+

(P1 − b1) · (D + E) ∗ 1/3 ∗B3
2 ∗ t+

(P1 − b1) ·B ∗B3
3 ∗ t (3)

After reduction, equation (3) can be repre-
sented as follows:

(Pt − bt) · np = (P0 − b0) ·A ∗B4
0

+
(P0 − b0) · (C + F ) + (P1 − b1) ·A

4
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Figure 2: Deforming non-collinear filter: for VF
pair, in the orthogonal plane perpen-
dicular to nt, if vertex Pt is always
on one side of edge atbt, and vertex
ct is always on the other side of atbt,
this pair should be culled out; for EE
pair, in the orthogonal plane perpen-
dicular to nt, if the two vertices of one
edge are always on the same side of
the other edge during the time interval
[0, 1], this pair should be culled out.

where B4
i is the ith basis function of the Bern-

stein polynomials of degree 4. If the five coeffi-
cients have the same sign, Pt cannot be collinear
with Et depending on the convex hull property
associated with control points of the Bernstein
basis.

4.2 Primitive Culling

Non-collinear Theorem for VF Test: The VF
filter is based on the extension of the Non-
collinear Theorem.

Corollary 1 (VF Filter) In the orthogonal
plane of nt, if the projection of vertex Pt is
always on one side of edge atbt, and vertex ct is
always on the other side of the edge, this pair
should be classified as a false positive (Fig.
2(a)).

We do filter culling process in the orthogonal
plane of nt. Firstly we decide whether the trian-
gle will turn over during the time interval by se-
lecting one vertex and its opposite edge from the
triangle and testing whether the vertex and its
opposite edge are collinear with Theorem 2. If
the triangle never turns over, we continue to fig-
ure out the cutting edge by comparing the sign of
the five scalar values between Pt and each edge
of Tt, which has been introduced in the Non-
collinear Theorem. The cutting edge separates
vertex Pt and triangle Tt in the time interval [0,
1]. We select the first one we find. The whole



Figure 3: Process of our algorithm: In the initial
work, we construct BVH. Then we use
Orphan Set [8] to get the adjacent col-
lision pairs. Finally, we use bounding
volume tests, deforming non-collinear
filter, deforming non-collinear filter
and exact elementary test sequentially
to get the non-adjacent collision pairs.

process is summarized as Corollary 1 and illus-
trated in Algorithm 1.
Non-collinear Theorem for EE Test: The
Non-collinear Theorem also can be extended for
the EE tests. The whole process is summarized
as Corollary 2 and illustrated in Algorithm 2.

Corollary 2 (EE Filter) In the orthogonal
plane of nt, if the two vertices a2t , b2t of one
edge are always on the same side of the other
edge a1t b

1
t during the time interval [0, 1], this

pair should be classified as a false positive (Fig.
2(b)).

4.3 CCD Algorithm

We use the non-collinear filter defined above to
perform collinearity based culling. Our filter can
be combined with hierarchical representations
(Fig. 3). After the bounding volume tests, we
perform the non-collinear filter to remove redun-
dant primitive pairs that are not in close prox-
imity to one another. Next, the deforming non-
collinear filter is used as part of low-level culling
to further remove the false positives.

5 Implementation and Results

In this section, we describe our implementa-
tion and compare the performance of our al-
gorithm against previous methods on several
benchmarks.
Implementation: We have implemented our al-
gorithm on a standard 2.33GHz Intel Pentium
machine with 3.75GB RAM on a 32-bit Win-
dows 7 platform. The performance is measured

Algorithm 1 Non-collinear Theorem for VF
Test: For a given moving vertex Pt and a
given moving triangle Tt, we decide whether
this primitive pair can be culled out. M1 ∼ M5

are used to denote the five scalar values be-
tween at and btct in the Non-collinear Theorem.
N1 ∼ N5 are used to denote the five scalar val-
ues between Pt and an edge et of the triangle in
the Non-collinear Theorem.

1: if M1 ∼M5 have different signs then
2: return false //The triangle turns over.
3: for all et = btct, ctat, atbt do
4: if N1 ∼ N5 have the same sign, and they

have different signs with M1 then
5: return true //Can be culled.
6: return false //Cannot be culled.

using a single thread. k-DOPs (specifically 16-
DOPs) are used as bounding volumes because
they provide a good balance between tight fit-
ting and rapid updating. We use BVH refitting
to update the hierarchy for deformable models.
Orphan set [8] and representative triangle (R-
Triangle) [15] are employed to reduce the redun-
dant elementary tests. We use deforming non-
penetration filter (DNF) [17] to cull the false
positives followed by deforming non-collinear
filter (NCF).
Benchmarks & Performance: In order to test
the performance of our algorithm, we used four
different benchmarks as follows:

• Airbag (18.2K triangles): The deforming
airbag has intra-object collisions as well
as inter-object collisions with the steering
wheel (Fig. 6(a)).

• Cloth-ball (92K triangles): A piece of cloth
drops on top of a ball and curls around re-
sulting in a high number of inter- and intra-
object collisions (Fig. 6(b)).

• Funnel (92K triangles): A cloth falls into a
funnel and pass through it under the pres-
sure of a ball. This model has a lot of inter-
and intra-object collisions (Fig. 6(c)).

• Bunny (4K triangles): A poor bunny is
smashed onto the ground by a steel plate.
This benchmark has a high number of inter-
and intra-object collisions (Fig. 6(d)).



Algorithm 2 Non-collinear Theorem for EE
Test: For two moving edges, we decide whether
this primitive pair can be culled out. M1 ∼ M5

and N1 ∼ N5 are used to denote the five scalar
values for {ajt , aitbit} and {bjt , aitbit} (where i =
1, 2, and j = 3 − i) in the Non-collinear Theo-
rem, respectively.

1: Get M1 ∼M5 for {a2t , a1t b1t }
2: if M1 ∼M5 have the same sign then
3: Get N1 ∼ N5 for {b2t , a1t b1t }
4: if N1 ∼ N5 have the same sign then
5: return true //Can be culled.
6: Get M1 ∼M5 for {a1t , a2t b2t }
7: if M1 ∼M5 have the same sign then
8: Get N1 ∼ N5 for {b1t , a2t b2t }
9: if N1 ∼ N5 have the same sign then

10: return true //Can be culled.
11: return false //Cannot be culled.

Fig. 4 highlights the culling efficiency of our
algorithm by comparing the number of elemen-
tary tests performed by our method, DNF, sepa-
rating axis theorem (SAT) [16], R-Triangle and
parallel filter in subspace (PFS) [18]. In addi-
tion, we have tested the culling rate of NCF af-
ter we perform the culling operation of DNF. As
shown in Fig. 5, for the non-culled primitives of
DNF, we can get a more than 90% culling rate
with NCF. The average running time per frame
in SAT, R-Triangle and our method is shown
in Tab. 1. Experiment results prove, we can
get better performance especially for large time
steps.
Analysis and Comparison: The principle of
filter culling is to use low costly culling tests to
replace the high costly elementary tests in or-
der to reduce the executed time. In addition, the
time reduction is determined by the culling rate
and the culling cost. The larger the culling rate
and the smaller the culling cost is, the more re-
markable the acceleration effect appears [18].

In our method, we use DNF to cull part of
false positives which takes about 29 additions
and 40 multiplications. Then we use the non-
collinear filter for further culling which takes
about 35 additions and 80 multiplications. Fi-
nally, we use the Interval-Newton method to
solve the cubic equations for the elementary test.
The elementary test takes about 164 additions,
245 multiplications, and 9 divisions on average

Table 1: Performance Comparison on Executed Time

Models Our Speedups Speedups
method over over

(ms/frame) SAT R-Triangle
Airbag 1×∗ 150 1.16× 1.41×
Airbag 3× 330 1.32× 1.37×
Cloth-ball 1× 938 1.24× 1.53×
Cloth-ball 3× 3507 1.36× 1.28×
Funnel 1× 73 1.09× 2.16×
Funnel 3× 139 1.14× 1.64×
Bunny 1× 12 1.54× 2.36×
Bunny 3× 38 1.67× 1.89×
* The time step, 1× denotes the original time interval. 3×

means the time step is enlarged by 3 times.
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R‐Triangle DNF PFS SAT Our Method

Figure 4: Culling efficiency: A, C, Fu and Bu
denotes airbag, cloth-ball, funnel and
bunny models respectively. n× de-
notes n times the length of the original
time interval.

(including the coplanar and inside tests). From
the benchmarks, we see our method is a good
complementary for DNF to improve the culling
efficiency.

We have implemented some previous meth-
ods (including DNF, PFS, SAT and R-Triangle).
In the following section, we would like to com-
pare our method with these culling methods.

• Parallel Filter in Subspace: They apply a
parallel linear filter and parallel planar filter
in eight different projection subspaces with
SIMD capacity [13]. As shown in Fig. 4,
they can get the best culling efficiency and
time reduction. However, their efficiency
comes from 8 projection axes and they use
SIMD capacity to parallel the filter in the 8
axes. It makes this method cannot be trans-
planted to GPU directly, while our method
can avoid the problem.

• Separating Axis Theorem: Given two el-
ements, the separating axis theorem (SAT)
[16] states that if there exists a line onto
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Figure 5: The culling rate of NCF following
DNF: We have calculated the culling
efficiency of NCF after DNF culling.
For the non-culled primitives of DNF,
we can get a more than 90% culling
rate with NCF.

which the projections of two elements do
not overlap, then the elements do not inter-
sect. Experiments prove that our method
has better time reduction and higher culling
efficiency than SAT on the four bench-
marks.

• Representative Triangles: R-Triangle
[15] can remove all the redundant elemen-
tary tests that are caused by shared fea-
tures between the triangles, which has the
culling rate of less than 80%.

• Deforming Non-penetration Filter: DNF
[17] uses coplanar condition to cull the
false positives. For the benchmarks owning
many self-collisions and large time steps,
its culling efficiency is rather poor.

Limitation: Our approach only provides a fil-
ter at the feature level. When the culling effi-
ciency of DNF is high (above 95% in our bench-
marks), our method is less efficient. Meanwhile,
our method is not efficient for rigid-body colli-
sion detection. If a high-level culling algorithm
is able to cull away a high percentage of false
positives, we may not obtain an improvement
with deforming non-collinear filter.

6 Conclusion

We have presented a novel culling algorithm for
CCD between complex deformable models by
proposing deformable non-collinear filter. By
combining with DNF, our algorithm can signifi-
cantly reduce the number of false positives, and

Figure 6: Benchmarks: all the benchmarks have
multiple simulation steps with many
inter- and intra-object collisions.

subsequently improve the overall performance
of CCD. Moreover, our method is easy to com-
bine with almost every prior collision detection
methods based on BVHs. We have tested the
performance on different benchmarks and ob-
served considerable improvement in terms of re-
ducing the number of false positives.

In our future work, it is interesting to improve
our filter that would make it efficient for rigid-
body collision detection. We also would like
to integrate our CCD algorithm with some well
known game physics engines, such as Bullet and
PhysX.
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