
1 Introduction

A volume-preserving
approach for modeling and
animating water flows
generated by metaballs

Ruofeng Tong1,
Kazufumi Kaneda2,
Hideo Yamashita2

1 Department of Computer Science and Engineering,
Zhejiang University, Hangzhou, 310027, China
2 Intelligent Systems and Modeling Laboratory,
Hiroshima University, Kagamiyama 1-4-1,
Higashi-Hiroshima, 739-8524, Japan
E-mail: kin@eml.hiroshima-u.ac.jp

Published online: 23 July 2002
c© Springer-Verlag 2002

This paper presents a volume-preserving ap-
proach for animating liquid flows modeled
by metaballs. A volume of liquid can be ad-
justed to a previous volume by using the in-
fluence radius and the maximum density of
metaballs as volume-controlling parameters.
Recursive subdivision is used to efficiently
calculate the volume of implicit surfaces.
The criterion for subdivision is obtained by
using the concept of interval analysis and the
common property of metaball density func-
tions. Providing a sequence of parameters,
the volume-compensation region can be con-
trolled according to the substance making up
the object, resulting in local preservation of
the volume. Set partition is used for deter-
mining isolated surfaces in order to apply
local-volume preservation.

Key words: Volume preserving – Metaballs
– Recursive subdivision – Interval analysis –
Graph theory

Correspondence to: K. Kaneda

Fluid simulation has been an active field in com-
puter graphics for some time. Besides the movement
and appearance of large-scale liquids [9–11, 17, 19],
small-scale liquids, such as water splashing and wa-
ter droplets, have recently drawn the attention of
many researchers [1, 8, 12, 13, 15, 18, 23]. Fujita et
al. [13] presented a method for describing a drop of
rain falling and producing a crown of splashing wa-
ter; O’Brien et al. [18] developed a spray model us-
ing a particle system; to realistically simulate water
droplets, Kaneda et al. [8] focused on their move-
ment and rendering; Yu et al. [23] emphasized their
shapes; and Fournier et al. [12] proposed approaches
for both motion and shape behavior. Most of these
examples use metaballs to model the small-scale
liquids.
Since proposed by Blinn and Nishimura [3, 16], the
metaball method has been widely used in modeling
soft objects, such as clouds and liquids, because of its
capability of generating smooth surfaces of arbitrary
geometry and topology [13, 15, 23]. The method also
is effective in modeling the deformation and move-
ment of liquids. When metaballs move, the gener-
ated surface follows them automatically. Thus, the
deformation of liquids is usually described by the
movement of metaballs. Various models have been
proposed to specify the motion scheme of the meta-
balls, from a purely keyframe-based system to phys-
ical animation. An appropriate motion-controlling
approach can be selected according to the demands
of animation. Moreover, it is quite natural to describe
the merging and separating of liquids based on their
blending property. But a problem still exists – that
is, how to preserve volume while the liquids undergo
deformation. This is precisely the issue we attempt to
solve in this paper.
When the shape of liquids generated by metaballs
changes from time step ti (shape A) to time step
ti+1 (shape B), we adjust shape B to make its vol-
ume equal to that of shape A. Shape B is adjusted
under the constraint that the positions of all the
metaballs generating it remain unchanged, because
in most metaball-based liquid animation, the meta-
balls’ positions are the main parameters controlling
the deformation of liquids. As how moving the meta-
balls to change a liquid from shape A to shape B
is not within the scope of this research, it can be
any movement-controlling scheme, such as in [8, 12,
13, 18]. Due to the above-mentioned constraint, our
volume-preserving approach will not distort their an-
imation effects.

The Visual Computer (2002)
Digital Object Identifier (DOI) 10.1007/s003710100164

R. Tong et al.: A volume-preserving approach for modeling and animating water flows generated by metaballs

All objects made of imcompressible substances,
not only liquids, will preserve their volume when
deformed. This drives many researchers to work
on the volume-preserving problem. Sederberg and
Parry pointed out in [21] that in free-form de-
formation, all objects inside the frame will pre-
serve their volume when the Jacobian of the de-
formation function is equal to 1. The problem
is, however, that ensuring the Jacobian remains 1
while the users move control points is difficult.
In [20], volume preservation is solved for objects
defined by Bezier solids. Aubert and Bechmann
presented a volume-preserving deformation method
suitable for polyhedral objects in [2]. And Hirota
and Maheshwari presented an efficient algorithm
to preserve the total volume of a solid undergo-
ing free-form deformation using a multi-level op-
timization [7]. But there are few approaches avail-
able for implicit surfaces. The only approach we
have found is that presented in [15] by Murta and
Miller. However, this method is inefficient regard-
ing volume calculation and fails in preserving local
volume.
The main obstacle for preserving the volume of liq-
uids is that its implicit representation cannot provide
an analytical way to calculate the volume. For this
reason, the approach presented in this paper differs
from the constrained minimization scheme used in
most of the above-mentioned methods.
Due to the constraint of keeping the positions of
metaballs unchanged, we select both the influence
radius and the maximum density of every metaball
as parameters to tune the volume because we need
to adjust the two parameters to fit a wide variety
of shape changes. Both of them are monotonic to
volume, thereby simplifying the volume-adjusting
scheme.
The speed of the volume calculation is essential in
this approach. To efficiently calculate the volume,
recursive subdivision is used. And the subdivision
criterion, which is essential to the subdivision effi-
ciency, is given by using the idea of interval analysis
to cull away cells that do not straddle the implicit
surface.
Another difficulty is that when the fluid consists of
several isolated surfaces, we have to distinguish the
metaballs generating one isolated surface from those
of the others and preserve the volume enclosed by
every isolated surface, because the volume variation
of one isolated surface cannot propagate to the other
isolated surfaces. This is achieved using an adja-

cency matrix, which is a concept in graph theory, and
discussed in Sect. 4.
The proposed approach preserves the volume of liq-
uids locally or globally, adjusting weights assigned
to each metaball. That is to say, for those fluids with
high viscosity, when deformation occurs only in a lo-
cal part of the liquid and changes the volume, this ap-
proach will balance the volume to its original value
within a local region near the deformation position,
with the other parts of liquids far enough away re-
maining unchanged. It is accomplished by assigning
a weight to each metaball to control its contribution
to volume adjusting. For the local-volume preserva-
tion, the farther the metaball is from the deformation
location, the smaller its weight, while for the global
volume preservation, all the weights are set to the
same value. The weights for the local-volume preser-
vation are also generated by the adjacency matrix.
The remainder of this paper is organized as follows:
Sect. 2 is an introduction of the volume-controlling
parameters and their influence on volume variation,
together with the main procedure for preserving vol-
ume; Sect. 3 proposes a volume-calculation scheme
using recursive subdivision based on the idea of in-
terval analysis; Sect. 4 describes how to localize the
volume compensation; and following the examples
in Sect. 5, concluding remarks are given in Sect. 6.

2 Volume-adjusting scheme

The surface of liquids generated by metaballs is de-
fined by the points satisfying the following equation:

f(x, y, z) =
n∑

i=0

qi fi − T0 = 0, (1)

where T0 is a threshold, qi is a factor coefficient (also
called the maximum density) of metaball I , and fi is
the density function of metaball I . The volume of the
liquids can be described as

∫∫∫
f(x,y,z)>0 dxdydz.

Therefore, in the remainder of this paper, we will
concentrate on the implicit surface f(x, y, z) = 0 .
The integral expression of volume cannot be com-
puted analytically for most field functions, but it tells
us that when the region in which f(x, y, z) > 0 is in-
creased, the volume of the implicit surface also will
increase.
There are many existing forms of metaball density
functions that can be used in Eq. (1). The follow-
ing are three typical forms proposed by Murakami,

R. Tong et al.: A volume-preserving approach for modeling and animating water flows generated by metaballs

Wyvill, and Nishimura respectively.

fi(r) =
(

1−
(

r

Ri

)2
)2

, (2)

fi(r) = −4

9

(
r

Ri

)6

+ 17

9

(
r

Ri

)4

− 22

9

(
r

Ri

)2

+1,

(3)

fi(r) =




1−3
(

r
Ri

)2
(0 ≤ r ≤ Ri

3)

3
2

(
1−

(
r
Ri

)2
)

(Ri
3 ≤ r ≤ Ri)

, (4)

where r is the distance from point (x, y, z) to the
center of metaball, Ri is the influence radius of meta-
ball I . All have the properties that fi(0) = 1, fi(1) =
0, f ′

i (0) = f ′
i (1) = 0, as illustrated in Fig. 1. These

properties make the density generated by several
metaballs C1 continuous.
In order to make the approach suitable for all im-
plicit surfaces generated by any kind of metaball
field function, we discard the above detailed equa-
tions and use their common properties illustrated by
Fig. 1.
From Eq. (1), we know that changing any of qi, fi
or T0 will change the region where f(x, y, z) > 0 and
then change the volume. T0 is monotonic to f , allow-
ing for the simple control of volume. The problem
is that it cannot meet the needs of local deforma-
tion. When T0 changes, the entire implicit surface
also will change. We thus have to fix T0 and search
for other volume control parameters.
Although the work of Desbrun et al. in [5] did not ad-
dress the volume-preserving problem, they presented
an approach to control the volume by adopting a new
field function:
new fi(r) = fi(r − k), (5)
where fi is the traditional metaball field function as
in Eqs. (2–4), r is the distance from a given point to
the center of a metaball, and k is the variable used
for controlling volume. We can increase the volume
by assigning k a positive value, and decrease it by
assigning k a negative one. The drawback is that
when we want to decrease the volume and assign
k < 0, the first derivative at r = 0 is not equal to zero
(new f ′

i (0) �= 0), and this will cause the isosurface
not to be smooth at some points.
Another existing approach is that of [15], in which
Murta et al. used the maximum density qi as a volume-
controlling parameter. In this way, the volume can be

Fig. 1. Shape of field function

increased by increasing qi . There is still a drawback:
when qi has been assigned a large value, it exerts lit-
tle influence on volume. And no matter how large qi
is, the isosurface cannot expand beyond its influence
range. Therefore, sometimes we cannot adjust the
current volume to its original value with the meta-
balls’ influence radii unchanged. For example, when
ten separated metaballs arrive at the same location
and generate one isolated surface, its volume can-
not be adjusted to the original volume no matter how
large the values assigned to qi are, as the isosurface
cannot expand beyond the ball with the influence ra-
dius.
To overcome these disadvantages, we simultane-
ously use qi and Ri as control parameters to adjust
the volume. Both parameters are monotonic to the
volume, so that when we want to increase the vol-
ume, we simply increase the maximum density qi
and the influence radius Ri at the same time.
The main procedure of volume-preserving animation
for a metaball-based object is as follows:
Step 1. Initialization, such as setting scene and time

interval, and generating metaballs.
Then, to each time step ti , perform the following
steps:
Step 2. Move metaballs to new positions according

to the demands of animation effects.
Step 3. Classify all the metaballs into different sets.

This step is designed to handle the preserv-
ing of local volume. When a deformation oc-
curs, the corresponding volume adjustment
will be employed only for those metaballs
that are in the same set as those participating
in the deformation. A detailed scheme for
the classification will be presented in Sect. 4.

Step 4. For each set J generated by step 3, calculate
the volume V j

i−1 of an isosurface generated
by metaballs in this set at time step ti−1, then
adjust the volume-controlling parameter qk

R. Tong et al.: A volume-preserving approach for modeling and animating water flows generated by metaballs

and Rk of every metaball K in set J to make
the current volume V j

i equal to V j
i−1. Rk and

qk are adjusted by Rk = (1+wk ∗µ) ∗ Rk
and qk = (1+wk ∗µ)∗qk recursively, where
wk is a weight of the metaball K , which is
used to control the metaball’s contribution to
volume variation. When controlling the vol-
ume, the larger wk is, the more the volume-
controlling parameters qk and Rk will be
changed. The detailed approach to set wk
will be introduced in Sect. 4. µ is a param-
eter to adjust all the Rks and qks. A binary
search is used to find the suitable value of µ.

Step 5. Rendering.

In the above procedure, Step 1, Step 2, and Step 5
are common for a metaball-based animation, while
Step 3 and Step 4 are particular to preserving
volume.

3 Volume calculation using recursive
subdivision

The volume enclosed by an implicit surface cannot
be calculated analytically. Recursive subdivision is
employed as a numerical way to calculate the volume
because it is more efficient than uniform sampling.
A pseudocode of calculating the volume of an object
within region X using recursive subdivision can be
described as follows:

Add X to stack S.
While S is nonempty

Pop X from S
If the size of X is smaller than a threshold EPS

Add X to undetermined stack U
Else if X is completely within the object
Add X to within-object stack V

Else if X is completely outside the object
Discard X

Else
Subdivide X into smaller region X1, X2, . . . ,

Xn,
And push them into S.

End while.

The sum of volumes of regions in within-object stack
V plus half of volumes of regions in undetermined
stack U is approximately regarded as the volume we
are seeking.

Fig. 2. An inaccurate criterion for subdivision

Although the recursive subdivision is more efficient
than uniform sampling, the efficiency of this ap-
proach in practical use is determined by the ac-
curacy and speed of judging whether X is inside
or outside the object. Figure 2 illustrates an exam-
ple of subdivision using the range of metaball in-
fluence as a judging criterion. Its inaccurate judg-
ment causes unnecessary subdivision and lowers the
efficiency. Interval analysis is a valid mathematic
tool to help solve the inside–outside problem more
accurately.

3.1 Interval analysis

An interval, A = [a, b], is a subset of R defined
as [a, b] = {x|a ≤ x ≤ b, x, a, b,∈ R}, with a and b
called the bounds of the interval; a is the lower bound
and b is the upper bound. In the following sections,
capital letters are used to represent an interval, while
the upper and lower bounds of the interval X are de-
noted respectively as X.ub and X.lb.
Interval arithmetic (also called interval analysis [14,
22]) generalizes an ordinary arithmetic to closed,
bounded ranges of real numbers. All the vari-
ables of the function are intervals, and correspond-
ingly, the function is also an interval and called
an inclusion function. Let { f(x)|(x ∈ X)} be a tra-
ditional function, and the inclusion function for
f , written as F, can be described as F (X) =
[F.lb, F.ub] , where F.lb ≤ minx∈X f(x), F.ub ≥
maxx∈X f(x). Many possible inclusion functions can
be defined for a given function f . Obviously, an
ideal function is that F.lb = minx∈X f(x) , F.ub =
maxx∈X f(x). But for a complicated function f , it is
impractical to calculate the minimum and maximum

R. Tong et al.: A volume-preserving approach for modeling and animating water flows generated by metaballs

of f . We must therefore compromise between the
tightness of the bound and the calculation cost.
The natural interval extensions of the elementary op-
erations of arithmetic are

X +Y = [X.lb+Y.lb, X.ub+Y.ub], (6)
X −Y = [X.lb−Y.ub, X.ub−Y.lb], (7)
X ∗Y = [min(X.lb∗Y.lb, X.lb∗Y.ub, X.ub∗Y.lb,

X.ub∗Y.ub), max(X.lb∗Y.lb, X.lb∗Y.ub,

X.ub∗Y.lb, X.ub∗Y.ub)], (8)
X/Y = [min(X.lb/Y.lb, X.lb/Y.ub, X.ub/Y.lb,

X.ub/Y.ub), max(X.lb/Y.lb, X.lb/Y.ub,

X.ub/Y.lb, X.ub/Y.ub)] 0 /∈ [Y.lb, Y.ub] ,
(9)

where X = [X.lb, X.ub] and Y = [Y.lb, Y.ub], and
the proposed method does not use a division by inter-
vals containing zero.
It is clear that the above interval operations (called
formulae IA) can be applied recursively to yield an
inclusion function for an arbitrary, nested combi-
nation of arithmetic operations. Thus, the inclusion
function of all the polynomial functions can be eval-
uated by the combination of the above operations. It
seems that this can be used in the recursive subdivi-
sion scheme to solve the inside–outside problem for
the implicit surface generated by metaballs.
Actually, however, it is still not very practical, as the
range intervals produced in this way are often much
wider than the true ranges of the function. For exam-
ple, for the function f(x) = x(10− x), x ∈ [4, 6], the
true range of f(x) is [24, 25], Applying the IA for-
mulae, Eqs. (6–9), we have

10− X = [10, 10]− [4, 6] = [4, 6]
X ∗ (10− X) = [4, 6] ∗ [4, 6] = [16, 36].
This problem is particularly serious in long compu-
tation chains, where the intervals computed at one
stage serve as inputs for the next [4].

3.2 Inclusion function for metaball field
function

In this section, we calculate the inclusion func-
tion F(C) of density function f(x, y, z) = ∑N

i=1 ki

fi (x, y, z) =∑N
i=1 ki gi(r) =∑N

i=1 ki

(
1−

(
r
Ri

)2
)2

on cell C = [X, Y, Z], where X = [X.lb, X.ub],
Y = [Y.lb, Y.ub], Z = [Z.lb, Z.ub], ki > 0.
Using formulae IA, we have F(C) = [F.lb, F.ub] =[∑N

i=1 ki Fi.lb,
∑N

i=1 ki Fi .ub
]
, where Fi(C) = [Fi.lb,

Fi .ub] is the inclusion function of fi (x, y, z) on cell
C. To avoid the expansion of range interval caused
by using formulae IA for long computation chains,
we calculate Fi(C) = [Fi.lb, Fi.ub], and in partic-
ular, we utilize the property of the metaball density
function to get much tighter range intervals. The
ideal Fi(C)is that Fi.lb = minx∈X,y∈Y,z∈Z fi(x, y, z)
and Fi.ub = maxx∈X,y∈Y,z∈Z fi(x, y, z). Note that
gi(r) is a monotonic decrease function of r , and thus
the problem can be converted to finding
maxx∈X,y∈Y,z∈Z r2 = maxx∈X,y∈Y,z∈Z((x − xi)

2 + (y −
yi)

2 + (z − zi)
2) and minx∈X,y∈Y,z∈Z r2 =

minx∈X,y∈Y,z∈Z((x − xi)
2 + (y − yi)

2 + (z − zi)
2),

where (xi, yi,zi) is the center of metaball I . Because
x, y, z are independent variables, we have

max
x∈X,y∈Y,z∈Z

r2 = max
x∈X

(x − xi)
2 +max

y∈Y
(y − yi)

2 (10)

+max
z∈Z

(z − zi)
2,

min
x∈X,y∈Y,z∈Z

r2 = min
x∈X

(x − xi)
2 +min

y∈Y
(y − yi)

2 (11)

+min
z∈Z

(z − zi)
2.

Now the problem has become simplified, with
maxx∈X(x − xi)

2 and minx∈X(x − xi)
2 obtained by

the following codes:

if (xi < (X.lb+ X.ub)/2.0)

max
x∈X

(x − xi)
2 = (X.ub− xi)

2

else
max
x∈X

(x − xi)
2 = (X.lb− xi)

2

if (xi < X.lb)

min
x∈X

(x − xi)
2 = (X.lb− xi)

2

else if (xi > X.ub)

min
x∈X

(x − xi)
2 = (X.ub− xi)

2

else
min
x∈X

(x − xi)
2 = 0.0

Similarly, we can obtain maxy∈Y(y − yi)
2,

maxz∈Z(z−zi)
2 and miny∈Y (y−yi)

2, minz∈Z(z−zi)
2,

and then use Eqs. (10) and (11) to obtain
maxx∈X,y∈Y,z∈Z r2 and minx∈X,y∈Y,z∈Z r2.

R. Tong et al.: A volume-preserving approach for modeling and animating water flows generated by metaballs

In this way, the computation cost of calculating the
range of field function f(x,y,z) in a given cube is
just twice that of calculating f(x,y,z) at one point.
And the range calculated in this way is much more
accurate than using traditional interval analysis [22],
affine arithmetic [4], or Lipschitz condition [6].

4 Local-volume preserving

4.1 Metaball classification for volume
preserving

Volume preserving can be classified into the preserv-
ing of global volume and the preserving of local vol-
ume. The former means preserving the entire volume
of the object, and the latter means preserving all vol-
umes of the defined object areas.
Our goal is to preserve the local volume, namely,
to limit the volume compensation within the region
near the place where volume variation occurs. This
step is necessary to meet the demands of local de-
formation. Particularly for those objects consisting
of several isolated surfaces, it is simply irrational to
adjust all the surfaces to make up for the volume vari-
ation caused by the deformation of a single surface.
As illustrated in Fig. 3, five metaballs V1, V2, V3, V4
and V5 generate two isolated surfaces S1 and S2. V4
is moving and V1, V2, V3, V5 are motionless. The vol-
ume of S1 varies because the movement of V4, and
S2 remains unchanged. In this case, it is unreason-
able to adjust all the metaballs’ influence radii and
maximum densities to compensate for the volume
variation of S1, because the volume variation cannot
propagate from S1 to another isolated surface S2. We
therefore must distinguish the metaballs generating
S1 from the others, and make the volume-adjusting
scheme applicable only to those generating S1.
To achieve this goal, we must first obtain the follow-
ing information at each time step ti :

• The number of the isolated surfaces
• How many metaballs compose each isolated sur-

face, and which are they

We can solve this problem with the help of graph the-
ory.
Assuming the number of metaballs is N , all the meta-
balls (denoted by Vi (i = 1, 2, . . . , N)) are regarded
as vertices of graphG = (V, E), with the edge of the
graph defined as:

3

4

Fig. 3. Two insolated surfaces generated by metaballs

Fig. 4. Two metaballs having overlapped influence
ranges can generate two insolated surfaces

If Vi and Vj satisfy Condition I, there is an edge
{Vi, Vj} between Vi and Vj , otherwise there is no
edge between them.

Condition I: Vi and Vj have overlapped influence
range. Influence range of a metaball refers to the ball
with the position of the metaball as its center, and the
influence radius of metaball as it radius.

An informal explanation for Condition I is that meta-
ball Vi and Vj are connected directly, as are V1 and
V2 in Fig. 3. In fact it is not sufficient for Condition
I to judge that Vi and Vj are connected directly, on
the grounds that they can generate two isolated sur-
faces although their influence ranges are overlapped,
as indicated in Fig. 4. But in this case, when we ad-
just the influence radius of Vi , the volume of Vj will
change correspondingly. We must, therefore, con-
sider them as a whole when we adjust their volume-
controlling parameters, because they have influences
on each other’s volume, although they actually are
not in the same isolated surface. Applying Condition
I to Fig. 3, we find that there are edges between V1

R. Tong et al.: A volume-preserving approach for modeling and animating water flows generated by metaballs

and V2, V2 and V4, V3 and V5, but no edge between
V1 and V3, V1 and V4, V1 and V5, V2 and V3, V2 and
V5, V3 and V4, V4 and V5. According to this defini-
tion, Fig. 3 can be described as an undirected graph,
as shown in Fig. 5.
In the graph representing the metaballs and their re-
lationships, that metaballs Vi and Vj are within the
same isolated surface can be interpreted as meaning
there is at least one path between vertex Vi and Vj .
And the connected components of the graph refer to
the isolated surfaces in space. The information we
want can then be described as:

• The number of connected components of the
graph

• The vertices of each connected component

This can be obtained by using an adjacency matrix.
Suppose that the vertices of G(V, E) are listed arbi-
trarily as V1, V2, V3, . . . , Vn. The adjacency matrix
of G, with respect to this listing of the vertices, is
the n ×n zero–one matrix with 1 as its (i, j)th entry
when Vi and Vj are adjacent, and 0 as its (i, j)th en-
try when they are not adjacent. In other words, if its
adjacency matrix is A = [aij], then

aij =
{

1, if {Vi, Vj} is an edge of G
0, else

Using the adjacency matrix, we can define a con-
nection matrix of G as C = I + A + A2 +· · ·+ An−1,
where I is the identity matrix. The connection matrix
C =[cij] has the property that


There is at least one path between

vertex Vi and Vj,
if cij �= 0

There is no path between vertex Vi

and Vj ,
if cij = 0

After exchanging several rows and columns, the
connection matrix can be rewritten in the form of

the block matrix




C1 0 0 · · · 0
0 C2 0 · · · 0
0 0 C3 · · · 0
...

...
...

. . .
...

0 0 0 · · · Ck


, where Ci

is a submatrix with nonzero components. Each Ci
represents one connected component of graph G.
So the number of submatrices Ci equates to the
number of isolated surfaces Si , the vertices in Ci
referring to the metaballs generating Si . For ex-
ample, the adjacency matrix of graph in Fig. 3 is

Fig. 5. The corresponding undirected graph of Fig. 3

A =
v1
v2
v3
v4
v5

V1 V2 V3 V4 V5


0 1 0 0 0
1 0 0 1 0
0 0 0 0 1
0 1 0 0 0
0 0 1 0 0


,and its corresponding connec-

tion matrix is C =
v1
v2
v3
v4
v5

V1 V2 V3 V4 V5


4 3 0 3 0
3 7 0 3 0
0 0 3 0 2
3 3 0 4 0
0 0 2 0 3


. By exchanging

the third and fourth rows and columns respectively,

we have

[
C1 0
0 C2

]
=

v1
v2
v4
v3
v5

V1 V2 V4 V3 V5


4 3 3 0 0
3 7 3 0 0
3 3 4 0 0
0 0 0 3 2
0 0 0 2 3


. Now we can

draw the conclusion that there are two isolated sur-
faces S1 and S2. S1 is composed of metaballs V1,
V2,and V4, while S2 is composed of V3 and V5.
Thus far, we can classify the metaballs into several
sets Wj at each time step ti . Each set Wj contains
metaballs generating the isolated surface Sj . But
there still exists a serious problem: the sets evalu-
ated at time step ti may be different from those at
time step ti−1. That is to say, the number of isolated
surfaces at time step ti and ti−1 might be differ-
ent, and the metaballs generating them different,
too. For example, assume Fig. 3 is the scene at
time step ti−1. At time step ti , metaball V4 moves
to a new location, illustrated in Fig. 6a. The result
of classification at time step ti−1 is

{
Wi−1

1 , Wi−1
2

} =
{{V1, V2, V4} , {V3, V5}}, and that at time step ti is{

Wi
1, Wi

2, Wi
3

} = {{V1, V2} , {V3, V5} , {V4}}. In this

R. Tong et al.: A volume-preserving approach for modeling and animating water flows generated by metaballs

a b

Fig. 6. Metaball V4 moves to a new location at time step ti

case, what we should do is to adjust the volume
within {V1, V2, V4} and {V3, V5}. If metaball V4
moves to a new location, as in Fig. 6b, the classi-
fied sets at time step ti then become

{
Wi

1, Wi
2

} =
{{V1, V2} , {V3, V4, V5}}. This time we should ad-
just V1,V2,V3, V4,V5 simultaneously to preserve vol-
ume, because the volume variation can propagate
from isolated surface S1 to S2 through the move-
ment of V4. Thus, when the metaballs’ classifica-
tions

{
Wi−1

1 , Wi−1
2 , . . . , Wi−1

ki−1

}
at time step ti−1 and{

Wi
1, Wi

2, . . . , Wi
ki

}
at time step ti are different, we

must create a new classification accordingly.
Actually, for a set containing all the metaballs
W = {V1, V2, V3, . . . , Vn}, the metaball classifica-
tion P = {

Wi
1, Wi

2, . . . , Wi
ki

}
is a partition of W .

When there are two different partitions Pi−1 ={
Wi−1

1 , Wi−1
2 , · · · , Wi−1

ki−1

}
and Pi = {

Wi
1, Wi

2, · · · ,

Wi
ki

}
at successive time steps ti−1 and ti , the new

partition P on which we need to preserve the vol-
ume can be generated by a union operation of
partitionPi−1 andPi. The detailed explanation of the
union operation of two partitions can be found in the
Appendix.

4.2 Weight of metaball for adjusting volume

Now that we have created a partition P = {
W1, W2,

· · · , Wk
}

to preserve the volume within each W j ,
we can concentrate on the volume variation and
adjustment within one isolated surface. Different
substances will reflect volume variation differently
within the object. For example, for fluids, volume
variation will propagate over the entire isolated sur-
face, but for an elastic object, the compensation of
volume variation will be limited to a region near
the location of the volume variation itself, the scope

of the region depending on the flexibility of the
substance. To describe this difference, we provide
a sequence of parameters to control the scope of
compensation region corresponding to the flexibility
of substances.
According to the distance from the location of vol-
ume variation, we assign a weight wk to each meta-
ball K , and take Rk = (1 +wk*Rstep) ∗ Rk, qk =
(1+wk*qstep)∗qk to adjust the influence radius and
maximum density of metaball K to balance the vol-
ume variation. This means the larger the weight
wk, the more the volume-controlling parameters will
change. And if wk = 0, the volume-controlling pa-
rameters of metaball K remain unchanged, meaning
that the local shape near metaball K is preserved. We
therefore set a larger weight to the metaball near the
location of volume variation and a smaller weight to
the more distant metaball.
When the influence radius, maximum density and
threshold T0 remain unchanged, the main cause of
volume variation is the movement of metaballs. We
then might take the location of moving metaballs as
the place where volume variation occurs, and assign
a large weight to the moving metaballs and those
directly connected. In the related graph, the vertex
Vi corresponding to the moving metaball and those
vertices adjacent to Vi should be assigned a large
weight, and those whose shortest path to Vi is a con-
siderable distance should be assigned a small weight.
To achieve this, we can make use of the adjacency

matrix A = [aij]. Assume As =
[
a[s]

ij

]
, we can easily

understand that a[2]
ij �= 0 means there is at least one

path of length 2 from Vi to Vj since aij �= 0 means
vertices Vi and Vj are adjacent. And the value of

a[2]
ij refers to the number of paths of length 2 from

Vi toVj . Similarly the (i, j)th entry of matrix As

means the number of paths of length s from Vi to Vj .
With this property of adjacency matrix, we can make
a slight adjustment to the connection matrix to gener-
ate a matrix G = [gij] for weight assignment:

G = c0 I + c1 A + c2 A2 +· · ·+ cN−1 AN−1

Where cs are coefficients satisfying c0 = c1 > c2 >
c3 > . . . > cN−1, which refers to the volume-comp-
ensation duty that a metaball having a path of
length s to a moving metaball should undertake.
Therefore, if Vi is moving, the volume-compensation
duty of metaball Vj to the volume variation caused
by Vi can be represented as gij =∑N−1

s=0 cia
[s]
ij . And

R. Tong et al.: A volume-preserving approach for modeling and animating water flows generated by metaballs

d j =∑
i∈M gij =∑

i∈M

∑N−1
s=0 csa

[s]
ij means the duty

of Vj to all the volume variation in the isolated
surface, where M is the set of moving metaballs.
Finally, we assign w j = d j∑N−1

j d j
as the weight of

metaball Vj . The coefficient cs, therefore, repre-
sents in essence the basic parameters to distribute the
volume-compensation duty to each metaball. A cor-
responding scope of volume-compensation region
suited to a given substance can be roughly deter-
mined by manually assigning cs a proper value. For
example, [c0, c1, c2, c3, c4, c5, . . . , cN−1] = [4, 4,
2, 1, 0, 0, . . . , 0] will make the volume-adjusting
scheme applicable only to those metaballs whose
shortest path to the moving metaball is shorter than
length 4. And within these volume-compensation re-
gions, all metaballs can be classified into four types
according to the length of their shortest path to the
moving metaballs:

• Length-0 type (moving metaballs)
• Length-1 type (metaballs directly connected with

the moving metaballs)
• Length-2 type (metaballs having the shortest path

of length 2 to the moving metaballs)
• Length-3 type (metaballs having the shortest path

of length 3 to the moving metaballs)

The proportion among volume-compensation duty
of these four types is about 4 : 4 : 2 : 1.
And to the substance of fluids, [c0, c1, c2, c3, c4, c5,
. . . , cN−1] = [1, 1, 1, 1, 1, 1, . . . , 1] is applicable,
which means that all the metaballs take part in the
volume-adjusting scheme.

5 Examples

We have applied this approach to simulate drops of
water falling from a horizontal plane. The original
scene is composed of 38 metaballs on the same hor-
izontal plane. The maximum densities q′

is of these
metaballs are all assigned the value of 1.0. When
drops fall from the plane, the part remaining on the
plane shrinks to balance the entire volume with the
original volume. Figures 7 and 8 simulate the pro-
cess with different parameters. In Fig. 7, the weights
of all the metaballs are assigned the same value, al-
lowing the part remaining on the plane to shrink
evenly. In the end scene of Fig. 7 (the Fig. 7c), the
maximum densities of these metaballs are all equal
to 0.94. In Fig. 8, the volume is preserved locally.

a

b

c

Fig. 7. Global volume-preserving

The controlling sequence cs is specified as the val-
ues [4, 4, 2, 0.2, 0, . . . , 0], so that the region near
the location where drops fall shrinks more, and the
region sufficiently removed from that same loca-

R. Tong et al.: A volume-preserving approach for modeling and animating water flows generated by metaballs

a

b

c

Fig. 8. Local volume-preserving

tion remains unchanged. The maximum densities of
metaballs in Fig. 8c range from 0.77 to 1.0, accord-
ing to the distance from the location of the falling
drops.

The example uses fs(r) = (
1− r2

R2
s

)2
as the density

function.

6 Conclusions

In this paper, we have presented a volume-preserving
approach for liquids modeled by metaballs. We ad-
just the volume of liquids to an original volume by
tuning the influence radius and maximum density of
metaballs, thereby avoiding distortion of the anima-
tion effect, since in most animation, the deformation
of liquids is achieved by the movement of metaballs.
We use a recursive subdivision scheme to calculate
the volume of implicit surfaces. A relatively accurate
subdivision criterion is obtained by using the partic-
ular property of metaball density function. We can
know from Sect. 3.2 that we obtained the range of
density function within the entire cube only by the
computation cost of calculating the function at two
points. This is much better than using traditional in-
terval analysis or affine arithmetic [4], both in speed
and accuracy. It is also more advanced than the Lip-
schitz condition approach [6] because our approach
can quickly calculate the accurate range of density
function generated by a single metaball in a cube,
while the Lipschitz condition approach introduced
an expansion of the real range by approximating
| f(x1)− f(x2)| with λ ‖x1 − x2‖, where λ is the up-
per bound of the derivative of f(x) within [x1, x2].
Graph theory enables us to distinguish the metaballs
generating one isolated surface from those generat-
ing another, and makes the volume-adjusting scheme
applicable only to those metaballs belonging to the
isolated surface whose volume varies. Furthermore,
the scope of the volume-compensation region can
be controlled so that the volume can be preserved
locally.
We used Eq. (2) as a density function, but the ap-
proach can be applied to any metaball field function
having the shape of Fig. 1. This approach is appli-
cable to all objects, not only liquids, generated by
metaballs and animated by metaball movement. To
increase versatility, a generalization to make the ap-
proach suitable for all skeleton-based implicit sur-
faces is expected to result from further research.

References

1. Ashraf G, Wong KC (1999) Dust and water splashing mod-
els for hopping figures. J Vis Comput Anim 10(4):193–213

R. Tong et al.: A volume-preserving approach for modeling and animating water flows generated by metaballs

2. Aubert F, Bechmann D (1997) Volume-preserving space de-
formation. Comput Graph 21(5):625–637

3. Blinn J (1982) A generalization of algebraic surface draw-
ing. ACM Trans Graph 1(3):235–256

4. Comba JLD, Stolfi J (1993) Affine arithmetic and its ap-
plications to computer graphics. In: Proceedings of the VI
Sibgrapi, pp 9–18

5. Desbrun M, Gascuel MP (1995) Animating soft substances
with implicit surfaces. In: Proceedings of SIGGRAPH ’95,
pp 287–290

6. Galin E, Akkouche S (2000) Incremental polygonization of
implicit surfaces. Graph Models 62(1):19–39

7. Hirota G, Maheshwari R, Lin MC (2000) Fast volume-
preserving free-form deformation using multi-level opti-
mization. CAD 32(8/9):499–512

8. Kaneda K, Ikeda S, Yamashita H (1999) Animation of wa-
ter droplets moving down a surface. J Vis Comput Anim
10(1):15–26

9. Kass M, Miller G (1990) Rapid, stable fluid dynamics for
computer graphics. Comput Graph 24(4):49–57

10. Foster N, Metaxas D (1996) Realistic animation of liquids.
Graph Models Image Process 58(5):471–483

11. Fournier A, Reeves B (1986) A simple model of ocean
waves. In: Proceedings of SIGGRAPH ’86, pp 75–84

12. Fournier P, Habibi A, Poulin P (1998) Simulating the flow
of liquid droplets. In: Proceedings graphics interface 98, pp
133–142

13. Fujita T, Hirota K, Murakami K (1990) Representation of
splashing water using metaball model. Fujitsu 41(2):159–
165

14. Moore RE (1966) Interval analysis. Prentice Hall, Engle-
wood Cliffs, New Jersey

15. Murta A, Miller J (1999) Modelling and rendering liquids
in motion. In: WSCG’99 Proceedings, pp 194–201

16. Nishimura H, Hirai M, Kawai T, Kawata T, Shirakara I,
Omura K (1985) Object modeling by distribution functions.
Electron Commun 68D(4):718–725

17. Nishita T, Nakamae E (1994): Method of displaying opti-
cal effects within water: Using the Accumulation Buffer. In:
Proceedings of SIGGRAPH ’94, pp 24–29

18. O’Brien JF, Hodgins JK (1995) Dynamic simulation of
splashing fluids. In: Proceedings of Computer Animation
’95, Geneva Switzerland, April 19-21, pp 198–205

19. Peachy D (1986) Modeling waves and surf. In: Proceedings
of SIGGRAPH ’86, pp 65–74

20. Rappoport A, Sheffer A, Bercovier M (1996) Volume pre-
serving free-form solids. IEEE Trans Vis Comput Graph.
2(1):19–27

21. Sederberg TW, Parry SR (1986) Free-form deformation of
solid geometric models. Comput Graph 20(4):151–160

22. Snyder JM (1992) Interval analysis for computer graphics.
Comput Graph 26(2):121–130

23. Yu YJ, Jung HY, Cho HG (1999) A new water droplet
model using metaball in the gravitational field. Comput
Graph 23(2):213–222

Appendix
Procedure of union operation of partition

Assume Pi−1 =
{

Wi−1
1 , Wi−1

2 , . . . , Wi−1
ki−1

}
and Pi ={

Wi
1, Wi

2, . . . , Wi
ki

}
are two different partitions of

set W = {V1, V2, V3, . . . , Vn}, the union operation of
Pi−1 and Pi can be described by the following pseu-
docode.

P′
i−1 = Pi−1; P′

i = Pi ; N = 0; P = Φ;
/*N: number of the blocks of the new partition*/

While (P′
i−1 �= Φ){

N ++;
WN = any element of P′

i−1;
While (there is at least one element Wi

j in P′
i , satisfy Wi

j ∩ WN �= Φ) {
WN = WN ∪ Wi

j;

P′
i = P′

i −
{

Wi
j

}
;

While (there is at least one element Wi−1
k in P′

i−1,
satisfy Wi−1

k ∩ WN �= Φ) {
WN = WN ∪ Wi−1

k ;

P′
i−1 = P′

i−1 −
{

Wi−1
k

}
;

}
}

P = P +{WN }
}

P = {W1, W2, W3, · · · , WN } is the new partition we seek.

Photographs of the authors and their biographies are given on
the next page.

R. Tong et al.: A volume-preserving approach for modeling and animating water flows generated by metaballs

RUOFENG TONG is an asso-
ciate professor in the Depart-
ment of Computer Science, Zhe-
jiang University, China. He was
a visiting researcher in the Fac-
ulty of Engineering, Hiroshima
University, Japan, from 1999 to
2001. He received his BE from
Fudan University, in 1991, and
a PhD from Zhejiang Univer-
sity China in 1996. His research
interests include geometric mod-
eling, computer graphics and
animation.

KAZUFUMI KANEDA is an
associate professor in the De-
partment of Information Engi-
neering at Hiroshima Univer-
sity. He worked at the Chugoku
Electric Power Company, Japan,
from 1984 to 1986. He joined
Hiroshima University in 1986.
He was a visiting researcher
in the Engineering Computer
Graphics Laboratory at Brigham
Young University in 1991. Kane-
da received his BE, ME, and DE
in 1982, 1984, and 1991, respec-

tively, from Hiroshima University. His research interests include
computer graphics, scientific visualization, and image process-
ing. He is a member of the ACM, the IPSJ, the IEICE, and the
IEEJ.

HIDEO YAMASHITA is a Pro-
fessor in the Department of In-
formation Engineering at Hi-
roshima University. He received
his BE and ME in electrical en-
gineering from Hiroshima Uni-
versity, in 1964 and 1968, re-
spectively, and a PhD in elec-
trical engineering from Waseda
University, Tokyo, in 1977. His
interests include electric and
magnetic fields analysis of elec-

tric machinery by finite-element analysis and visualization of
3D magnetic fields by computer graphics. He is a member of the
IEEJ and the IEEE.

