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Abstract

This paper deals with the merging problem, i.e. to approximate two adjacent BeÂzier curves by a single BeÂzier curve. A novel approach for

approximate merging is introduced in the paper by using the constrained optimization method. The basic idea of this method is to ®nd

conditions for the precise merging of BeÂzier curves ®rst, and then compute the constrained optimization solution by moving the control

points. ªDiscreteº coef®cient norm in L2 sense and ªsquared difference integralº norm are used in our method. Continuity at the endpoints of

curves are considered in the merging process, and approximate merging with points constraints are also discussed. Further, it is shown that

the degree elevation of original BeÂzier curves will reduce the merging error. q 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction and problem statement

Parametric polynomial representations are widely used in

CAD systems which model free-form curves and surfaces.

Bernstein±Bezier, Schoenberg-B-spline and Hermite±

Coons type basis functions are frequently used in different

systems. With the availability of a fast growing variety of

modeling systems the demand has risen for exchanging

curve and surface descriptions between various CAD

systems [1]. The general aim when transferring geometric

information from one system to another is to ensure a high

degree of accuracy, the least possible loss of information

and a small amount of geometric data for communication.

Conversion from one polynomial base to another can be

achieved by direct matrix multiplication. For reducing the

amount of communicating data, approximate conversion is

considered by Hoschek [2]. As mentioned by Hoschek, the

approximate conversion includes the following.

² Degree reduction: to ®nd a parametric curve of degree n

to approximate the given curve of degree m�n , m�:
² Merging: to merge as many as possible curve segments

of degree M to one curve segment of degree N�M # N�:

Degree reduction methods of BeÂzier and Ball curves have

been extensively investigated by Watkins and Worsey [3],

Lachance [4], Eck [5,6], Bogacki et al. [7] and Hu et al. [8,9]

etc., degree reduction of B-spline curves has been consid-

ered by Piegl et al. [10], degree reduction of parametric

surfaces also has been considered by Hu et al. [11,12].

However merging of BeÂzier curves is still an interesting

and open problem.

Problem. For two adjacent BeÂzier curves P(u) and Q(v)

�0 # u; v # 1� with corresponding control points Pi and Qi

�i � 0; 1;¼; n�; merging of P(u) and Q(v) is a process that

amounts to ®nding an n degree BeÂzier curve R(t) with

control points Ri �i � 0; 1;¼n�; such that a suitable distance

function d�R; �R� between R(t) and

�R�t� �

Xn

i�0

PiB
n
i

t

l

� �
0 # t # l

Xn

i�0

QiB
n
i

t 2 l

1 2 l

� �
l # t # 1

8>>>><>>>>:
�1�

is minimized on the interval [0, 1], where l is a subdivision

parameter.

The basic idea of this article is to ®nd conditions for

precise merging of BeÂzier curves. We modify control points

of two BeÂzier curves such that the modi®ed curves satisfy

the precise merging conditions, then new control points of
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the merged curve can be obtained by an extrapolation

algorithm.

The rest of the paper is organized as follows. Two

constrained optimization methods with different optimiza-

tion criteria are introduced, both of which achieve merging

of BeÂzier curves by solving linear equation systems. An

existence proof of the system of linear equations is given

in Section 3. Conditions for matching original endpoints and

derivatives are considered in Section 4, and merging with

points constraints is dealt with in Section 5. Finally, we

discuss approximate merging with degree elevation in

Section 6.

2. Constrained optimization method for merging

2.1. Conditions of precise merging

Consider two n degree BeÂzier curves P(u) and Q(v), we

®rst give conditions of precise merging. If P(u) and Q(v) can

be merged precisely, this is to say, there exists an n degree

BeÂzier curve R�t� � Pn
i�0 RiB

n
i �t� such that R�t� � �R�t�

( �R�t� is de®ned as in Eq. (1)), so we have

2iP�u�
2ui

�����
u�1

� 2iQ�v�
2vi

�����
v�0

i � 0; 1;¼n: �2�

Note that

u � t

l
; v � t 2 l

1 2 l
;

by the derivative formula of BeÂzier curves, Eq. (2) yields

1

li

n!

�n 2 i�! D
iPn2i � 1

�1 2 l�i
n!

�n 2 i�! D
iQ0; �3�

where D is the difference operator de®ned as DPi � Pi11 2
Pi; so we have the following theorem.

Theorem 1. Two n degree BeÂzier curves P(u) and Q(v)

can be merged precisely, if and only if there exists m�m .
0�; such that

DiPn2i � miDiQ0 for i � 0; 1;¼; n: �4�

Proof.

1. Necessity. If P(u) and Q(v) can be merged precisely,

from Eq. (3) we have

DiPn2i � miDiQ0 for i � 0; 1;¼; n;

where

m � l

1 2 l
:

Therefore condition (4) is necessary.

2. Suf®ciency. First, we represent BeÂzier curves in the

exponential form. For any n degree BeÂzier curve S(t)

with control points Si �i � 0; 1;¼; n� we have

S�t� �
Xn

i�0

ti
n

i

 !
DiS0 �

Xn

i�0

�t 2 1�i
n

i

 !
DiSn2i: �5�

Note that Eq. (5) holds true for any t�t $ 0�: Next we

construct a new BeÂzier curve R(t), whose control points

Rj � j � 0; 1;¼; n� are de®ned by

Rj �
Xj

i�0

PiB
j
i

1

l

� �
;

where

l � m

m 1 1

and B
j
i �t� is the j degree BeÂzier base function. We will see

that P(u) and Q(v) can be precisely merged into R(t). We

calculate DkR0�k � 0; 1;¼n� as

DkR0 �
Xk

j�0

k

j

 !
�21�k2j

Xj

i�0

PiB
j
i

1

l

� �" #

�
Xk

i�0

Pi

Xk

j�i

B
j
i

1

l

� � k

j

 !
�21�k2j

24 35

�
Xk

i�0

Pi

k

i

 !
�21�k2i 1

lk
� i

lk
DkP0: �6�

Substitute Eq. (6) into exponential form (5), for t�0 #
t # l�; we have

R�t� �
Xn

i�0

ti
n

i

 !
DiR0 �

Xn

i�0

t

l

� �i n

i

 !
DiP0 � P

t

l

� �
Given condition (4), for t�l # t # 1�; we have

R�t� �
Xn

i�0

t

l

� �i n

i

 !
DiP0

�
Xn

i�0

t

l
2 1

� �i n

i

 !
DiPn2i

�
Xn

i�0

t

l
2 1

� �i

mi
n

i

 !
DiQ0 � Q

t 2 l

1 2 l

� �
According to Eq. (1), P(u) and Q(v) can be precisely

merged into R(t) with l as the subdivision parameter.

This completes the proof of Theorem 1.

A

2.2. Constrained optimization method (1)

We now consider the approximate merging problem
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stated in the previous Section 2.1. In order to obtain the

merged BeÂzier curve, we will explore two different optimi-

zation criteria in the following discussion. First, we use the

ªdiscreteº coef®cient norm, i.e. we set d�E�t�;F�t�� �Pn
i�0 iEi 2 Fii

2
; where E(t) and F(t) are n degree BeÂzier

curves with control points Ei and Fi, i´i is the Euclidean

norm. Minimization of the norm will result in the least

difference between corresponding control points of the

two curves. For BeÂzier curves P(u) and Q(v), perturbation

ei � �ex
i ; e

y
i ; e

z
i �T and di � �dx

i ; d
y
i ; d

z
i �T can be obtained for

control points Pi of P(u) and Qi of Q(v), respectively,

such that the modi®ed curves

P̂�u� �
Xn

i�0

P̂iB
n
i �u� �

Xn

i�0

�Pi 1 ei�Bn
i �u� 0 # u # 1

Q̂�v� �
Xn

i�0

Q̂iB
n
i �v� �

Xn

i�0

�Qi 1 di�Bn
i �v� 0 # v # 1

satis®es the conditions of Theorem 1, i.e., DiP̂n2i �
miDiQ̂0: Then, P̂�u�and Q̂�v� can be precisely merged into

a BeÂzier curve R(t) of degree n, which is considered to be

the approximate merged curve of P(u) and Q(v).

We determine ei; di �i � 0; 1;¼; n� by setting the optimi-

zation criterion O(e i, d i) as

O�ei; di� �
Xn

i�0

�ieii
2

1 idii
2� � Min

and Lagrange function is de®ned by

L �
Xn

i�0

�ieii
2

1 idii
2�

1
Xn

i�0

li�Di�Pn2i 1 en2i�2 miDi�Q0 1 d0��; �7�

where li � �lx
i ; l

y
i ;l

z
i � are Lagrange multipliers. In order to

obtain an appropriate value of m , we de®ne a sequence

mi�i � 1; 2;¼; n� such that

DiPn2i � mi
iD

iQ0

According to Theorem 1, the average value of the sequence

will be a reasonable choice for parameter m . Thus we take m
as

m �

Xn

i�1

mi

 !
n

�

Xn

i�1

i

������������
iDiPn2ii
iDiQ0i

s
n

0BBBBB@
1CCCCCA: �8�

Note that

Dien2i �
Xn

k�n 2 i

�21�n2k
i

n 2 k

 !
ek; �9�

Did0 �
Xi

k�0

�21�i2k
i

k

 !
dk; �10�

by setting

2L

2ex
j

;
2L

2ey
j

;
2L

2ez
j

;
2L

2dx
j

;
2L

2dy
j

;
2L

2dz
j

;
2L

2lx
i

;
2L

2ly
i

and
2L

2lz
i

to be zero, we have

2ej 1
Xn

i�n 2 j

li�21�n2j
i

n 2 j

 !
� 0 j � 0; 1;¼; n; �11�

2dj 2
Xn

i�j

mili�21�i2j
i

j

 !
� 0 j � 0; 1;¼; n; �12�

DiPn2i 1 Dien2i 2 miDiQ0 2 miDid0 � 0 i � 0; 1;¼; n:

�13�
Substituting Eqs. (11) and (12) into Eq. (13), produces the

system of linear equations

1

2

Xn

l�0

�1 1 �21�l1iml1i�
Xmin�l;i�

k�0

i

k

 !
l

k

 !" #
ll

� DiPn2i 2 miDiQ0 i � 0; 1;¼; n: �14�
Eq. (14) can be further simpli®ed as

1

2

Xn

l�0

�1 1 �2m�l1i�
l 1 i

i

 !" #
ll � DiPn2i 2 miDiQ0

i � 0; 1;¼; n: (15)

So ll �l � 0; 1;¼; n� can be obtained by solving the above

system of linear equations, and ei; di�i � 0; 1;¼; n� can be

obtained from Eqs. (11) and (12). The existing proof of

solution of the linear equation system (15) will be given

in Section 3.

2.3. Constrained optimization method (2)

We can also use the ªsquared difference integralº norm,

such that

d�E�t�;F�t�� �
Z1

0
�E�t�2 F�t��2 dt;

where E(t) and F(t) are n degree BeÂzier curves. The norm

can be viewed geometrically as the squared area between

two BeÂzier curves. Therefore, minimization of the norm will

result in the least enclosing area between the two curves.

We determine perturbations ei; di�i � 0; 1;¼; n�; de®ned

in Section 2.2, by setting the optimization criterion O(e i, d i)

as

O�ei; di� �
Z1

0

Xn

i�0

Bn
i �t�ei

 !2

1
Xn

i�0

Bn
i �t�di

 !2" #
dt � Min
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and Lagrange function is de®ned by

L �
Z1

0

Xn

i�0

Bn
i �t�ei

 !2

1
Xn

i�0

Bn
i �t�di

 !2" #
dt

1
Xn

i�0

li�Di�Pn2i 1 en2i�2 miDi�Q0 1 d0�� �16�

where li � �lx
i ; l

y
i ;l

z
i � are Lagrange multipliers and m is

de®ned as in Section 2.2. By setting

2L

2ex
j

;
2L

2ey
j

;
2L

2ez
j

;
2L

2dx
j

;
2L

2dy
j

;
2L

2dz
j

;
2L

2lx
i

;
2L

2ly
i

and
2L

2lz
i

to be zero, we have

2
Xn

i�0

eiNij 1
Xn

i�n 2 j

li�21�n2j
i

n 2 j

 !
� 0 j � 0; 1;¼; n;

�17�

2
Xn

i�0

diNij 2
Xn

i�j

mili�21�i2j
i

j

 !
� 0 j � 0; 1;¼; n; �18�

DiPn2i 1 Dien2i 2 miDiQ0 2 miDid0 � 0 i � 0; 1;¼; n:

�19�
where Nij is de®ned as

Nij �
Z1

0
Bn

i �t�Bn
j �t� dt i; j � 0; 1;¼; n: �20�

Thus e i, d i and li�i � 0; 1;¼; n� can be obtained by

solving the linear equation system consisting of Eqs.

(17)±(19). The existence proof will be given in Section 3.

2.4. Calculation of new control points Ri

We are now in a position to give a recursive algorithm to

compute new control points of the merged curve R(t). Since

control points of P̂�u� and Q̂�v� can be derived by subdivid-

ing R(t) at t � l � �m=�1 1 m�� (see Fig. 1), we have the

following algorithm to compute new control points by using

extrapolation.

Algorithm

Set l � m=�1 1 m�
Set P0

i � Pi 1 ei for i � 0; 1;¼; n

For j � 1; 2;¼; n

For i � j; j 1 1;¼; n

P j
i � �1 2 1=l�P j21

i21 1 1=lP
j21
i

Next i

Next j

Rk � Pk
k for k � 0; 1;¼; n:

Examples. In Fig. 2, we demonstrate merging of cubic

BeÂzier curves pair using the constrained optimization meth-

ods discussed so far. Examples (a) and (c) adopt the ®rst

constrained optimization method, while (b) and (d) use the
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(d)

Fig. 2. Merging of two cubic BeÂzier curves.



second optimization method in merging. The original curves

and control polygons are shown as solid lines, while the

merged curves and associated polygons are shown as dashed

lines. We can see that the ®rst method works better in (a),

while the second method achieves nicer results in (d).

3. An existence proof of solution

In this section, we ®rst give the existence proof of system

(15). By rewriting Eqs. (7) and (13) in the matrix form, we

get

L � hT´h 1 lT�Ah 1 B� �21�
and

Ah 1 B � 0 �22�
in which h��e0; e1;¼;en;d0;d1;¼; dn�T;l� �l0; l1;¼; ln�T;
A � �aij��n11�£�2n12�

B � �b0; b1;¼; bn�T;
where

bi � DiPn2i 2 miDiQ0:

Differentiating Eq. (21) with respect to h , we obtain (Eqs.

(11) and (12) in the matrix form)

2h 1 ATl � 0 �23�
By substituting Eq. (23) into Eq. (22), we obtain (Eq. (15) in

matrix form)

1
2

AATl � B: �24�
Note that

A �

0 0 0 ¼ 0 0 p p 0 0 ¼ 0 0 0

0 0 0 ¼ 0 p p p p 0 ¼ 0 0 0

0 0 0 ¼ p p p p p p ¼ 0 0 0

..

. ..
. ..

.
] ..

. ..
. ..

. ..
. ..

. ..
.

] ..
. ..

. ..
.

0 0 p ¼ p p p p p p ¼ p 0 0

0 p p ¼ p p p p p p ¼ p p 0

p p p ¼ p p p p p p ¼ p p p

0BBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCA
�n11�£�2n12�

is obviously a row-full-rank matrix. So 1
2

AAT is a positive

de®nite matrix, thus it's non-singular. This completes the

existence proof of the system (15).

Similarly, by rewriting Eq. (16) in matrix form, we get

L � hTCh 1 lT�Ah 1 B�: �25�
here C is a symmetric matrix de®ned as C �
�cij��2n12�£�2n12� in which

cij �

0; for 0 # i # n and n , j # 2n 1 1;

or 0 # j # n and n , i # 2n 1 1

Nij; for 0 # i; j # n

N�i2n21�� j2n21�; for n , i; j # 2n 1 1

8>>>>><>>>>>:
;

where Nij are de®ned in Eq. (20). According to Eq. (16),

h TCh is always positive for any h�h ± 0�; therefore C is

positive de®nite. Differentiating Eq. (25) with respect to h ,

we get (Eqs. (17) and (18) in matrix form)

2Ch 1 ATl � 0: �26�
Eq. (19) can also be written in matrix form

Ah 1 B � 0: �27�

Substituting Eq. (26) into Eq. (27), we obtain

1
2

AC21ATl � B �28�

because A is a row-full-rank matrix and C21 is

symmetric positive de®nite, so 1
2

AC21AT is non-singu-

lar [13]. By substituting Eq. (28) into Eq. (26), we

obtain h as

h 1 C21AT�AC21AT�21B � 0

This completes the existence proof of the linear equa-

tion system consisting of Eqs. (17)±(19).

4. Conditions for matching original endpoints and
derivatives

To match original endpoints P0 and Qn, two constraints

e0 � 0; dn � 0 should be added. Take the ®rst constrained

optimization method for example, by discussion similar to
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aij �

0; for 0 # i 1 j , n or n 1 i 1 1 , j # 2n 1 1

�21�n2j
i

n 2 j

 !
; for 0 # i; j # n; i 1 j $ n

�21�n1i2jmi
i

j 2 n 2 1

 !
; for 0 # i # n; n 1 1 # j # n 1 i 1 1

8>>>>>>><>>>>>>>:



that in Section 2.2, we obtain a system of linear equations

1

2

Xn

l�0

�1 1 �2m�l1i�
l 1 i

i

 !" #
ll � DiPn2i 2 miDiQ0

i � 0; 1;¼; n 2 1

1

2

Xn

l�0

�1 1 �2m�l1n�
Xmin�l;n 2 1�

k�0

n

k

 !
l

k

 !" #
ll � DnP0 2 mnDnQ0

8>>>>>>>><>>>>>>>>:
Then, li �i � 0; 1;¼; n� can be obtained, and ej; dj� j �
0; 1;¼; n� can be obtained as follows

e0 � 0

ej � 2
1

2

Xn

i�n 2 j

�21�n2j
i

n 2 j

 !
li j � 1;¼; n

dj � 1

2

Xn

i�j

�21�i2j
i

j

 !
mili j � 0; 1;¼; n 2 1

dn � 0

8>>>>>>>>>><>>>>>>>>>>:
Further, constraints e1 � 0 and dn21 � 0 could be added to

the above equation system so that the merged curve would

match the original derivatives at the left and right ends of

the pair of BeÂzier curves. The system of linear equations

would become

1

2

Xn

l�0

�1 1 �2m�l1i�
l 1 i

i

 !" #
ll � DiPn2i 2 miDiQ0

i � 0; 1;¼; n 2 2

1

2

Xn

l�0

�1 1 �2m�l1j�
Xmin�l;n 2 2�

k�0

j

k

 !
l

k

 !" #
ll � DjP0 2 mjDjQ0

j � n 2 1; n

8>>>>>>>>><>>>>>>>>>:
Then ej; dj � j � 0; 1;¼; n� can be obtained as follows

e0 � e1 � 0

ej � 2
1

2

Xn

i�n 2 j

�21�n2j
i

n 2 j

 !
li j � 2;¼; n

dj � 1

2

Xn

i�j

�21�i2j
i

j

 !
mili j � 0; 1;¼; n 2 2

dn � dn21 � 0

8>>>>>>>>>><>>>>>>>>>>:
Similarly, for the second constrained optimization method,

matching of original endpoints and derivatives can be

achieved by adding constraints e0 � e1 � 0 and dn �
dn21 � 0 to Lagrange function (16). Perturbations e i, d i

can then be obtained by solving the corresponding system

of linear equations.

Examples. In Fig. 3, we illustrate merging results of two

quartic BeÂzier curves using the ®rst optimization method.

Endpoints matching is implemented in (a), and matching of

derivatives at endpoints is achieved in (b). The original

curves and control polygons are shown as solid lines, and

the merged curves and associated polygons are shown as

dashed lines.

5. Approximate merging with points constraints

A more general problem of matching endpoints is for the

merged curve to pass through target points, not only

endpoints on the original BeÂzier curves. This can be

achieved by adding points constrained conditions to the

Lagrange function. Given that

Xn

i�0

Bn
i �uj�Pi �

Xn

i�0

Bn
i �uj��Pi 1 ei� j � 0; 1;¼; l;

Xn

i�0

Bn
i �vk�Qi �

Xn

i�0

Bn
i �vk��Qi 1 di� k � 0; 1;¼;m;

where uj� j � 0; 1;¼; l� and vk� j � 0; 1;¼;m� are para-

meters of different target points on P(u) and Q(v), respec-

tively, we have

Xn

i�0

Bn
i �uj�ei � 0 j � 0; 1;¼; l; �29�
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(a)

(b)

Fig. 3. Merging of two quartic BeÂzier curves with endpoints matching.



Xn

i�0

Bn
i �vk�di � 0 k � 0; 1;¼;m: �30�

By adding the above-constrained conditions, we rewrite the

Lagrange function as

L � O�ei; di�1
Xn

i�0

li�Di�Pn2i 1 en2i�2 miDi�Q0 1 d0��

1
Xl

j�0

ln1j11

Xn

i�0

Bn
i �uj�ei

 !

1
Xm
k�0

ln1l1k12

Xn

i�0

Bn
i �vk�di

 !
; (31)

where O(e i, d i) is the appropriate optimization criterion.

Differentiating Eq. (31) with respect to ei; di�i �
0; 1;¼; n� and li�i � 0; 1;¼; n 1 l 1 m 1 2�; using similar

techniques described in Sections 2.2 and 2.3, we obtain a

linear system of �3n 1 m 1 l 1 5� equations consisting of

Eqs. (13), (29), (30) and

2O�ei; di�
2ei

1
Xn

j�n 2 i

li�21�n2i
j

n 2 i

 !
1
Xl

j�0

ln1j11Bn
i �uj�

� 0 i � 0; 1;¼; n; (32)

2O�ei; di�
2di

2
Xn

j�i

mjli�21� j2i
j

i

 !
1
Xm
j�0

ln1j1l12Bn
i �vj�

� 0 i � 0; 1;¼; n: �33�

Note that unlike the equation system in Section 2.3, the

above linear system is not solvable when the total number of

constrained conditions in Eqs. (13), (29) and (30) exceeds

the number of constrained variables (e i and d i). Generally

speaking, the total number of different points constraints on

P(u) and Q(v) �l 1 m 1 2� should not be larger than �n 1 1�
for a solvable solution.

Example. Points constraints can be used in preserving the

geometric details of the original pair of BeÂzier curves. In

Fig. 4(a), two quintic BeÂzier curves are merged using the

second optimization method with endpoints matching, i.e.

u0 � 0:0; v0 � 1:0; while (b) illustrates the merging results

after three more points constraints at u0 � 0:5; u1 � 1:0;

v0 � 0:5 are added.

6. Constrained optimization with degree elevation

In this section, we will discuss constrained optimization

with degree elevation. Sometimes, two adjacent BeÂzier

curves are not suitable to be approximated by a new BeÂzier

curve with the same degree. For example, a cubic

BeÂzier curve can have at most one in¯ection point, so

merging a pair of BeÂzier curves that each has an in¯ection

point into a new cubic BeÂzier curve will not be a good idea.

A reasonable choice in this case is to merge two cubic

curves into a curve of degree 4 or 5. In effect, better approx-

imation can be achieved when two n degree BeÂzier curves

P(u) and Q(v) are merged into a new BeÂzier curve after the

degree elevation.

We can think of the increase in approximation precision

in this way. Constrained optimization can be viewed as a

two-step process: ®rstly, a set of BeÂzier curve pairs P̂�u� and

Q̂�v� are obtained such that each pair can be precisely

merged into a BeÂzier curve; secondly, the curves pair with

the least optimization norm is ªchosenº and merged as the

®nal approximate merged curve. Since each pair of P̂�u� and

Q̂�v� obtained in the ®rst step can be elevated to a higher

degree and still satisfy the condition of precise merging, the

set of curve pairs obtained in the ®rst step of constrained

optimization of degree n is only a subset of those obtained in

the ®rst step for degree n 1 1 or above. In other words,

optimization method will have more eligible curve pairs

to ªchoose fromº after degree elevation. Consequently

better approximate merged curve will be obtained.

We illustrate this process by using the second optimiza-

tion method. First, we prove a theorem about degree

elevation.

Theorem 2. P(u) is a n degree BeÂzier curve with control

points Pi�i � 0; 1;¼; n�; and D is the difference operator,

we have

DiPp
n112i � 1 2

i

n 1 1

� �
DiPn2i i � 0; 1;¼; n 1 1; �34�
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(a)

(b)

Fig. 4. Merging of two quintic BeÂzier curves with points constraints.



DiPp
0 � 1 2

i

n 1 1

� �
DiP0 i � 0; 1;¼; n 1 1 �35�

where Pp
i � i � 0; 1;¼; n 1 1� are n 1 1 degree control

points after degree elevation of P(u).

Proof. Note that

Pp
i � 1 2

i

n 1 1

� �
Pi 1

i

n 1 1
Pi21 i � 0; 1;¼; n 1 1;

�36�
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(a) (b)

(c) (d)

(e) (f)

Fig. 5. Merging of two quartic BeÂzier curves with degree elevation.
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(a)

(c)

(e)

(d)

(b)

(f)

Fig. 6. Merging of two quartic BeÂzier curves with degree elevation.



and

DiPp
n112i �

Xi

k�0

�21�i2k
i

k

 !
Pp

n111k2i i � 0; 1;¼; n 1 1;

�37�

DiPp
0 �

Xi

k�0

�21�k
i

k

 !
Pp

i2k i � 0; 1;¼; n 1 1: �38�

Substituting Eq. (36) into Eqs. (37) and (38) would yield

Eqs. (34) and (35). This completes the proof of Theorem 2.

Theorem 2 guarantees that the value of m (de®ned in Eq.

(8)) does not change after degree elevation. Thus merging

methods discussed in this paper will proceed with the same

parameter m for BeÂzier curves pair after degree elevation.

Given two adjacent BeÂzier curves of degree n, P(u) and

Q(v), we ®rst consider the approximate merged curve R(t)

using the second optimization method. Here, we de®ne the

merging error E as in Section 2.3, such that

E�R�t�;m� �
Z1

0
�P̂�u�2 P�u��2 du 1

Z1

0
�Q̂�v�2 Q�v��2 dv;

�39�

where P̂�u� and Q̂�v� can be precisely merged into R(t) with

subdivision parameter m=�1 1 m�:
After the degree elevation of BeÂzier curves P(u) and Q(v),

we obtain two new BeÂzier curves Pp(u) and Qp(v) of degree

n 1 1: Similarly, we obtain n 1 1 degree BeÂzier curves

P̂
p�u� and Q̂

p�v� after degree elevation of P̂�u� and Q̂�v�:
Therefore BeÂzier curves P̂

p�u� and Q̂
p�v� can also be

precisely merged into Rp(t), which is the n 1 1 degree

BeÂzier curve elevated from R(t). Examine the merging

error of R p (t) with Eq. (39), we have

E�Rp�t�;m�

�
Z1

0
�P̂p�u�2 Pp�u��2 du 1

Z1

0
�Q̂p�v�2 Qp�v��2 dv

�
Z1

0
�P̂�u�2 P�u��2 du 1

Z1

0
�Q̂�v�2 Q�v��2 dv

� E�R�t�;m�
On the other hand, for n 1 1 degree BeÂzier curves Pp(u)

and Q p (v), we compute an approximate merged curve �R�t�
of degree n 1 1 with parameter m using the second optimi-

zation method. According to the optimization criterion, we

have

E� �R�t�;m� � Min # E�Rp�t�;m� � E�R�t�;m� �40�
From Eq. (40) we can conclude that �R�t� results in less

merging error E than its n degree counterpart R(t), and

thus achieves better approximation after degree eleva-

tion. Similar results can be obtained for the ®rst opti-

mization method, with the de®nition of merging error E
as

E�R�t�;m� �
Xn

i�0

�ieii
2

1 idii
2�;

where e i and d i are perturbations of control points of

P̂�u� and Q̂�v� from P(u) and Q(v). Practical examples

of merging with both methods are provided in Figs. 5

and 6.

Examples. Two merging examples of quartic cases are

presented in Fig. 5 by using the ®rst optimization method.

Two original quartic BeÂzier curves are merged into a new

quartic BeÂzier curve each in (a) and (d), and are then merged

into BeÂzier curves of degree 5 and 6, respectively, in

(b), (c) and (e), (f) after degree elevation. The original

curves and control polygons are shown as solid lines,

and the merged curves and associated polygons are

shown as dashed lines.

Table 1 contains the comparison results of merging error

of each example presented in Fig. 5. From Table 1 we can

see that the merging error E(R(t),m ) decreases each time

after degree elevation.

Examples. Two merging examples of quartic cases are

presented in Fig. 6 by using the second optimization

method. Two original quartic BeÂzier curves are merged

into a new quartic BeÂzier curve each in (a) and (d), and

are then merged into BeÂzier curves of degree 5 and 6,

respectively, in (b), (c) and (e), (f) after degree elevation.

The original curves and control polygons are shown as solid

lines, and the merged curves and associated polygons are

shown as dashed lines.

Table 2 contains results of merging error of each example
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Table 1

Comparison of merging error after degree elevation

m E�R�t�;m�

Degree 4 Degree 5 Degree 6

Example (a) 0.934426 1.051789 0.498082 0.230428

Example (d) 0.753846 1.144209 0.403908 0.192052

Table 2

Comparison of merging error after degree elevation

m E�R�t�;m�

Degree 4 Degree 5 Degree 6

Example (a) 0.934426 0.023273 0.008274 0.003361

Example (d) 0.753846 0.020258 0.007306 0.002114



presented in Fig. 6. From Table 2 we can see that merging

error E(R(t),m ) decreases each time after degree elevation.

7. Remarks

Remark 1. In general, the discussion in this paper can

apply to all pairs of curves with G0 joining. However, Theo-

rem 1 prescribes that the merged curve should have at least

G1 continuity at the connecting point. Therefore we recom-

mend using the methods presented in the paper to pairs of

BeÂzier curves with at least G1 joining in order to avoid

discrepancy at connecting point.

Remark 2. Strictly speaking, the subdivision parameter m
in Eq. (7) should be dependent on ei; di�i � 0; 1;¼; n�; such

that

m � iPn 1 en 2 Pn21 2 en21i
iQ1 1 d1 2 Q0 2 d0i

:

Under such a choice, the Lagrange function L will get too

complicated. So we take m as in Eq. (8), where m is inde-

pendent on ei; di�i � 0; 1;¼; n�: However, a better choice

m 0 can be obtained from m so that the merging error will

get smaller. By using m de®ned in Eq. (8), the merged curve

R(t) of P(u) and Q(v) can be computed ®rstly as in Section

2. We hope to obtain better parameter m 0. With the unknown

parameter m 0, we subdivide the merged curve R(t) into two

BeÂzier curves with control points S 0i and T 0i �i � 0; 1;¼; n�;
and de®ne e 0i; d

0
i�i � 0; 1;¼; n� as

e 0i � S 0i 2 Pi �
Xi

j�0

Bi
j�m 0�Rj 2 Pi i � 0; 1;¼; n �41�

d 0i � T 0i 2 Qi �
Xn 2 i

j�0

Bn2i
j �m 0�Ri1j 2 Qi i � 0; 1;¼; n �42�

Since we wish to obtain m 0 such that optimization criterion

O be minimized, we have

dO�e 0i; d 0i�
dm 0

� 0 �43�

where O�e 0i; d 0i� is the appropriate optimization criterion.

Substituting Eqs. (41) and (42) into Eq. (43) will produce

a non-linear equation of m 0. Practical algorithms can be

derived to calculate m 0 by using Newton's method.

Remark 3. Merging methods discussed in this paper can

be further extended for cases of multiple BeÂzier curves.

Given a sequence of consecutive BeÂzier curves, our objec-

tive now is to obtain a new sequence of consecutive BeÂzier

curves that best approximates the original BeÂzier curves set.

We intend to minimize the number of curves in the new

sequence with the condition that the merging error stays

within a required error range E. It can proceed as follows.

First we group the initial sequence into adjacent pairs,

leaving the single BeÂzier curve at the end if the number of

curves is odd. Then for each pair, we apply optimization

method with endpoints matching and examine the merging

error. If the error exceeds a speci®ed error bound e , the pair

will not be merged and becomes two curves in the result

sequence. Otherwise the pair will be merged and all merged

curves from these pairs form a new sequence of BeÂzier

curves (not necessarily consecutive) for the next round of

grouping. Repeat the process until no two adjacent BeÂzier

curves can be found in the sequence, and we ®nally obtain

the result sequence of BeÂzier curves. Note that error bound

of each step of merging e must be carefully speci®ed such

that accumulated merging error of the process meets the

requirement E.
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