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Abstract Assembly planning plays a major role in the
manufacturing industry. In order to reduce computational
complexity, this paper presents a knowledge-based ap-
proach to the assembly sequence planning problem. The
CSBAT (connection-semantics-based assembly tree) hier-
archy proposed in this paper provides an appropriate way
to consider both geometric information and non-geometric
knowledge. In this research, the typical or standard CSBAT
is applied to a given assembly problem. The structure of the
KBASP (knowledge-based assembly sequence planning
system) is proposed and there are different ways to
construct plans for a CSBAT: by retrieving the typical
base, by retrieving the standard base, and by geometric
reasoning. The approach proposed in this paper can
generate assembly sequences for each CSBAT directly,
without the problem of merging plans for different child
CSBATs. The application shows that the knowledge-based
approach can reduce the computational complexity dras-
tically and obtain more feasible and practical plans.

Keywords Assembly planning . Connection semantics .
Graph matching . Knowledge base . Assembly model .
Sequence planning

1 Introduction

Assembly planning is a large scale and highly constrained
combinatorial problem, encompassing assembly sequence
planning and assembly task planning. Assembly planning
plays a major role in the manufacturing industry. This
automation constitutes one of the most important condi-
tions to guarantee the future competitiveness of industrial
companies. In the last decade, several approaches have
been proposed to generate assembly sequences automati-
cally. In summary, the existing approaches to the genera-
tion of assembly plans can be roughly classified into three
main approaches: human interaction, geometry-based
reasoning, and knowledge-based reasoning.

The method of human interaction mainly focuses on
each user’s query, either on the connection between a pair
of parts or the feasibility of a single assembly operation [1,
2]. Clearly, this method is far from the goal of automation.
Thereafter, a number of geometry-based reasoning ap-
proaches have been proposed. One general approach is the
cut-set method by many researchers [3, 4]. The cut-set
method follows the compute-and-test scheme, where all
possible ways to partition an assembly into two connected
subassemblies are generated, and each partition is tested for
local freedom and global freedom using geometric reason-
ing. The other approach of geometry-based reasoning is the
compute-and-generate strategy [5–7], where assembly
motions are parameterized and block relations are derived
to state which parts collide with other parts.

For the sake of generating good assembly plans, non-
geometric assembly data, besides geometric assembly
data, should also be used in assembly planning. There
have been several approaches that generate assembly
sequences by using high-level expert knowledge or
experience. Chakrabarty and Wolter describe a planner
that uses the structure both as a framework for structure-
dependent definitions of good plans, as well as a tool for
finding good plans more rapidly by reusing sub-plans for
repeated substructures [8]. Swaminathan and Barber
developed an experience-based assembly sequence
planner for mechanical assemblies [9]. This approach
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utilizes case-based planning to store, retrieve, and
modify existing cases or experience to generate assembly
sequences. Yin et al. proposed a connector-based hier-
archy approach that also seeks a plan-reuse-oriented
solution to assembly planning based on the hierarchy
description [10]. Fan [11] proposed a knowledge-based
virtual assembly system which focused on the genera-
tion, selection, evaluation, and planning for the assem-
bly. Marian et al. proposed some approaches based on
genetic algorithms or neutral networks for assembly
planning [12–14]. There are other approaches using
assembly knowledge or artificial intelligence [15, 16].

Compared with the existing systems based on the reuse
philosophy, the approach presented in this paper is to
generate the feasible plans for assembly directly, and avoid
the sophisticated merge of plans for substructures. The
CSBAT (connection-semantics-based assembly tree) hier-
archy proposed in this paper provides an appropriate way
to consider both geometric information and non-geometric
knowledge. By integrating geometry-based reasoning with
knowledge-based reasoning, the computational complexity
is reduced drastically, and the assembly sequences obtained
are more feasible and practical.

The rest of this paper is organized as follows: Section 2
considers the representation problem of the assembly
model. The strategy of assembly sequence planning is
described in Section 3. Section 4 provides an example to
illustrate the knowledge-based approach to assembly
sequence planning. Conclusions and areas for future
research are finally discussed in Section 5.

2 Assembly modeling

2.1 Connection-semantics-based assembly tree

A connector provides constraints on its jointed components
to ensure that these components perform the required
functions. Therefore, the connection is not only a thinking
module to construct product design, but is also the core
block to provide the components restriction. Connections
provide some significant relationships among two or more
assembled parts and can act as a foundation of assembly
clustering.

In this research, connection semantics is used to
represent each connection. Connection semantics is
denoted as Connect-Type (C )[A], where C is the set of
connectors, A is the set of all parts constrained by connector
C, and Connect-Type represents the connection type,
including: Bolt–Nut, Screw, Pin, Key, Roll-Fit, Mate,
Insert, etc. [17, 18].

It is noted that the connector parameter in some
connection types is a set of connectors, namely, a group
of several connectors. Two connections Connect-Type1
(C1)[A1] and Connect-Type2 (C2)[A2] satisfy the grouping
relation if: (1) A1=A2; and (2) C1 and C2 can be assembled
and removed only in the same direction, but in any order
with respect to each other.

In order to access and interpret assembly easily, the
assembly structure based on connection semantics can be
represented as a CSBAT, denoted as T=(V, E). The CSBAT
is one which has a distinguished node, called the root. The
level of a node u in the CSBAT, denoted as lev(u) , is the
length of the path connecting the root to u. If u is adjacent
to v (denoted as u∼v) and lev(v)−lev(u)=1, we say that u is
the parent of v, and, conversely, v is the child of u. A
CSBAT is a non-null rooted directed tree, in which each
internal node represents the connection semantics, and
each leaf node is a mechanical part. The connection
corresponding to the root is called the root connection of a
CSBAT. The CSBAT structure itself shows the assembly
hierarchy, independent subassemblies, and sequences in
the assembly. Figure 1 shows an example of a CSBAT. If
the children of a CSBAT are leaf nodes, the CSBAT is
called a primitive CSBAT. Therefore, the CSBAT shown in
Fig. 1b is a primitive CSBAT.

2.2 Connection-semantics-based assembly relational
model

The effectiveness of an assembly planner relies heavily
on the input of the assembly representation [19]. To
enable automated assembly sequence planning, all of the
related information should be organized and represented
as an assembly model. The assembly sequence planning
problem is, essentially, a geometrical one, the assembly
representation applied in this research will emphasize the
geometric information, such as the shapes of the parts,
their positions, and the contacts between the parts. A
purely geometric description of the assembly cannot
always generate a good assembly sequence. Some
sequences may be feasible from a geometric point of
view, but are impractical due to the special properties of
some connections. Furthermore, the inclusion of non-
geometric information helps to reduce the explosion of
possible solutions. The assembly representation used in
this research is the CSBARM (connection-semantics-
based assembly relational model) that integrates both
geometric and non-geometric assembly data [17, 18].

The CSBARM of an assembly is an undirected graph
that includes two types of nodes: parts and connectors.
Each node has its own attributes. The relationship between
the nodes describes the connection of the parts. Essentially,
the CSBARM is similar to the CBRM (connection-based
relational model) used in the connector-based hierarchy
approach [10], but some important changes have been

Fig. 1 a An example assembly. b Its CSBAT
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made to support the planning strategy proposed in this
research. The CSBARM for assembly can be denoted as
<P, C, M>, where [17, 18]:

– P is a set of nodes, each of which corresponds to a part
not belonging to the connectors in the assembly

– C is a set of nodes, each of which corresponds to a
connector in the assembly

– M is a set of liaisons between two nodes, each of which
corresponds to the connection between pairs of
elements of P ∪C

The most important information obtained from all
mating features is the degrees of freedom (DOF) of the
mating entities. It is very important to match the CSBATs
and CSBARMs, and retrieve the typical or standard plans
from the plan base. To accomplish this, the mating feature
is represented by a simple 3×4 matrix [7]. The elements
represent the degree of freedom on the three major axes in
3D space. The configuration space for an assembly model
typically has 3DOF in translation and 3DOF in rotation.
The configuration space is usually subdivided into positive
and negative directions, and is represented by individual
elements in the matrix. This leads to the following mating

matrix
x�xwx�wx
y�ywy�wy
z�zwz�wz

2
4

3
5; where ±x, ±y, and ±z are linear

translations and ±wx, ±wy, and ±wz are the rotations about
the X, Y, and Z axes, respectively. The values of the
elements in the mating matrices are either 0 or 1. Integer 1
indicates freedom of motion in the direction along the
corresponding principal axis. Integer 0 indicates the motion
is disallowed in the axial direction. If the degrees of
freedom of the mating entities are constrained by two or
more mating features, there will be a single mating matrix.
In the mating matrix, the male part of the mating entities is
the moving member and the female part is the fixed
member [18].

2.3 Plan representation

The representation problem for assembly plans has
received some attention due to the requirement of less
storage and easy user understanding. The assembly
sequence has been represented by AND/OR graphs [3],
assembly trees [6], and assembly precedence graphs [9]. In
this research, assembly precedence graphs (APG) are
employed for plan representation. Figure 2 shows an
example of an APG. It is noted that the APG may represent
several feasible sequences to build an assembly. For
example, the APG shown in Fig. 2 denotes two feasible
sequences.

3 Knowledge-based approach to assembly sequence planning

The system structure of the KBASP (knowledge-based
approach to assembly sequence planning) is shown in
Fig. 3. The utilization of knowledge stored in the
knowledge base is fundamental to the approach. Com-
pared with other systems based on the reuse philosophy,
the KBASP can generate the feasible plans for assembly
directly, and does not need to merge plans for CSBATs.
The KBASP is mainly composed of the following
modules [17].

3.1 CSBAT generator

The reuse of stored plans in the knowledge base is
fundamental to the proposed approach to assembly
planning. If an assembly is represented as a CSBAT, then
the plans can be generated by retrieving the knowledge
base. There may be more than one CSBAT for an assembly.
Therefore, it is necessary to select a preferred CSBAT out
of multiple CSBATs that can be used to reuse stored plans
in the knowledge base. In KBASP, a CSBAT hierarchy for
an assembly is automatically derived from its CSBARM by
geometric reasoning and knowledge-based reasoning
according to some heuristic rules. The algorithms of
generation for a CSBAT hierarchy will be discussed in
Section 3.1 in detail.

3.2 Plan generator

This phase involves the searching of the knowledge base to
find a match for the CSBAT provided to the assembly
sequence planning module. If similar or the same CSBATs
in the knowledge base do not give rise to useful plans for
the provided CSBAT, the system will generate plans by
geometric reasoning. In the KBASP, there are three ways to
find plans for a CSBAT, which are attempted in the
following order: (1) by retrieving the typical base; (2) by
retrieving the standard base; and (3) by geometric reason-
ing. The plans obtained from the plan base are expressed in
terms of part names that act as placeholders for actual parts.
To make the plans useful, the dummy part names are
converted to reflect the part names from the problem.

3.2.1 Typical plan retrieval and modification

It is generally desirable that similar or the same structure in
all assemblies should be built in the same way during the
assembly process, since this generally requires a smaller

-z
block lidbox

-z
screw1

screw2

-z

-z

Fig. 2 Assembly precedence graphs (APG) of the container
assembly
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variety of operations. Moreover, retrieving from the typical
plan base can speed up the planning process, along with
better plans being produced. Therefore, the plans of the
typical assemblies are stored in the typical plan base for
reuse. The typical plan base consists of the knowledge of
CSBATs that are typical assemblies or subassemblies in the
enterprise. For example, the motorcycle engine is a typical
assembly in the motorcycle enterprise. Therefore, the
assembly plans for the CSBAT of a motorcycle engine can
be stored in the typical plan base for reuse. To support the
reuse of plans for typical CSBATs, all kinds of knowledge
is stored for each CSBAT in the typical plan base. There
may be one or several assembly sequences corresponding
to each typical CSBAT.

3.2.2 Standard plan retrieval and modification

If similar or the same CSBATs in the typical plan base do
not give rise to useful plans for the provided CSBAT, the
system next retrieves the stored plans from the standard
plan base. For most primitive CSBATs, there are common
and preferred procedures to assemble them. What’s more,
these assembly processes for primitive CSBATs are
invariable. For instance, there are standardized procedures
to install a ball bearing type of CSBAT. During assembly
planning, plans for a primitive CSBAT are obtained by
retrieving suggested plans from the standard plan base,
instead of by reasoning about the low-level interactions
among the parts of the CSBAT. By doing so, not only can a
great deal of computation can be avoided, but also, better
plans are obtained by integrating manufacturing experience
with building CSBATs. The standard plan base consists of

primitive CSBATs that are indexed by the types of their
connections.

3.2.3 Geometric reasoning

If similar or the same CSBATs in the typical and standard
bases do not give rise to useful plans for the provided
CSBAT, the system next generates feasible plans for the
CSBAT by geometric reasoning. Each child CSBAT of the
provided CSBAT acting as a subassembly is called a super-
part; therefore, the combinatorial explosion problem
encountered in most geometric reasoning approaches is
alleviated. As the parts of a CSBAT are assumed to come
into contact with each other, the geometrically feasible
plans are generated mainly by reasoning about the mating
directions of each part in the CSBAT. In addition, directed-
connector knowledge is exploited for the generation of the
assembly precedence constraint graph. By integrating
geometry-based reasoning with knowledge-based reason-
ing, the computation complexity is reduced drastically and
the assembly sequences obtained are more feasible and
practical.

3.3 Simulation and evaluation

After the assembly sequence planning stage, the feasible
and practical solutions are found. At this stage, the user can
simulate the assembly or disassembly process in the virtual
environment. The main benefits of the simulation and
evaluation stage are discussed as the following: (1) the
simulation and evaluation module can provide tested and

CSBARM  Data

CSBAT Generator
Knowledge Base

Standard Base

Typical Base

Plan Generator

Standard Plan
Retrival&Modify

Solid Model Data

Simulation and
 Evaluation

Geometric
Reasoning

Maintainer Feasible and Optimum sequence

Typical Plan
Retrival&Modify

Knowledge-Based Assembly Sequence Planning System
Fig. 3 System structure of
KBASP (knowledge-based ap-
proach to assembly sequence
planning)
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valuable information that might otherwise have required
time-consuming and expensive physical experimentation;
(2) it also assists in training assembly operators using
virtual machines and virtual workpieces; (3) it actually
controls and runs the operation of the real assembly
processes through the manipulation of the virtual objects in
the virtual environment. In addition, all feasible solutions
are compared with each other at this stage. According to the
proposed criteria, such as the assembling time or cost, the
optimum assembly sequence is selected.

3.4 Maintainer

The maintainer unit decides whether the newly generated
plans should be stored to the knowledge base for reuse. The
user can tell themaintainer to store the typical CSBAT in the
typical plan base if it is a typical subassembly. If the plans of
a primitive connection type do not exist in the standard plan
base, themaintainermodule also stores the knowledge in the
standard plan base. In the current implementation, the
module is not fully featured. However, it is designed to be
used in future developments.

3.5 Algorithm for the generation of a CSBAT

Each CSBAT is classified by the connection types stated in
Section 2. As stated before, there may be more than one
CSBAT for an assembly. Therefore, it is necessary to select
a preferred CSBAT out of multiple CSBATs that can be
used to reuse stored plans in the knowledge base. The
preferred CSBAT can be selected by evaluating tentative
CSBATs based on selection indices (SIs). The SI evaluates
a cluster of parts in the CSBAT based on the following
criteria [17, 18]:

1. Stability index (STI) The stability index, STI (T), of a
subassembly T represents how stable all child CSBATs of
T remain during the disassembly operation of the
connectors from T. If the child CSBATs are not stably
fastened, the parts may deviate from their correct position,
and the operator has to take more time to reposition them.
The index STI is defined as follows:

STI Tð Þ ¼
X

Pm�subtree Tð Þ

X
Pj2Pm

Fst stb Pj

� �� �
(1)

where subtree(T) is a set of all child CSBATs of T. In this
research, Fst() maps the stability flag of a part into the time
of basic motions: reach, grasp, move, position, release,
and reach, as proposed by Kanai et al. [20]. The time of
grasp, position, and release changes depending on the
DOF of the part. The DOF of the part without considering
the bilateral constraints is denoted as df1 and the DOF
considering the bilateral constraints is df2. The maximum

of df1 is 6 and that of df2 is 12. So each basic motion x can
be set a standard time Tx. Fst() is defined by Eq. 2:

Fst stb Pj

� �� � ¼
0 stb Pj

� �� � ¼ stable

WrepCdev stb Pj

� �� � ¼ partly stable

Wspt stb Pj

� �� � ¼ unstable

8><
>:

(2)

where
Wrep ¼ Treach þ Tmove þWgrasp þWposition þWrelease; Wrelease ¼ 0 df 1 ¼ 0ð Þ

Trelease df 1 6¼ 0ð Þ
�

;

Wgrasp ¼ 0 df 1 ¼ 0ð Þ
Tgrasp df 1 6¼ 0ð Þ

�
; Wposition ¼

0 df 1 ¼ 0ð Þ
Tposition

�
2 df 1 ¼ 1ð Þ

Tposition df 1 � 2ð Þ

8<
: ; Cdev ¼ df 2

�
12;

and Wspt is the extra time required to support the unstable
part by hand or using a jig.

2. Operation preference index (PRI) The operation
preference index indicates the priority of the connection
type. As we know, an assembly may have several CSBATs
of different connection types. However, the operation
complexity of each connection type is different. For
instance, the CSBAT of a Screw type connection can be
disassembled or assembled more easily than the CSBAT of
the Rivet type. The index PRI is determined by the
connection types as shown in Table 1.

3. Operation continuity index (CNI) The operation conti-
nuity index indicates how much extra motion the operator
has to make for exchanging the connection types, mating
directions, and tools. The index CNI is defined by Eq. 3:

CNI ¼ k1 � TPI þ k2 � DRI þ k3 � TLI (3)

where k1, k2, and k3 are the coefficients and k1+k2+k3=1.
The TPI indicates the change of the connection type; if the
CSBAT has a different root connection type from its
parent CSBAT, the TPI=1, else, the TPI=0. The DRI
indicates the change of the mating directions. If the mating
direction of the CSBAT is different from that of its parent
CSBAT connection, the value of DRI=(the angle of
direction change)/90. That’s to say, if the mating direction
of the CSBAT is same as that of its parent CSBAT, the
value of DRI is 0. The TLI depends on whether its own
tools are same as that of its parent CSBAT. If the tools are
different, the value of TLI is 1, else, the value is 0.

Table 1 Operation preference index (PRI)

Connection type PRI

Mate, Insert 0.3
Bolt, Bolt–Nut, Screw, Pin 0.5
Key, Roll-Fit, Gear, Belt-Mesh, Bearing 0.6
Rivet, Welding 0.8
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4. Parallelism index (PI) The parallelism of a CSBAT can
be measured approximately by the number of the
connectors which make up the connection and the number
of parts in each child CSBAT. The index PI is defined by
Eq. 4:

PI ¼ k1 � CI � k2 � SPI ¼ k1 � Nc

Nall
�
Xm�1

i¼1

Xm
j¼iþ1

Ni � Nj

�� ��
(4)

where k1 and k2 are the coefficients and k1+k2=1, Nall is the
number of all parts in the CSBAT, Nc is the number of
connectors making the connection, and Ni is the number of
parts in the child CSBAT i. The higher the value of CI
implies the greater the number of the connectors which
make up the connection. The lower the value of SPI
implies the more operations can be done in parallel for
different child CSBATs. However, the parallelism index
should be carefully weighted in CSBAT generation, since
the increase of parallelism to reduce the assembly time
may result in excessive cost in part/subassembly transfer,
manipulation, and assembly layout, etc.

5. Selection index (SI) The selection index is given as
follows: SI ¼ e �k1�STI�k2�PRI�k3�CNIþk4�PIð Þ; where k1, k2, k3,
and k4 are the assembly coefficients and k1+k2+k3+k4=1.
The CSBAT that has the highest SI value is selected as the
candidate CSBAT. The system prefers to select the CSBAT
with smaller STI, PRI, and CNI values, but larger PI
values. The coefficients can be assigned by the designer,
based on the relative significance of each selection index
on the overall assembly cost. For instance, if the system
selects the CSBATwith the highest priority which requires
more parallel operations, k4 is set to the larger value
compared with the other coefficients. In addition to the
selection indices proposed in this paper, other indices can
be incorporated into the SI determination for further
improvement [6].

3.6 Typical plans retrieval and modification

After the generation of the CSBAT and CSBARM, the
problem of typical plans retrieval from the typical plan base
turns into the problem of matching the CSBAT and
CSBARM. That’s to say, the typical plans retrieval is a
problem of graph matching. Plenty of algorithms for graph
matching have been proposed with the specific aim of
reducing the computational complexity of the matching

Fig. 4 a Provided assembly.
b, c Two cases in the typical
base. d, e, f Their CSBATs,
respectively
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algorithms [21–26]. These approaches are mainly applied
in the areas of pattern recognition and machine vision.
They include the recognition of graphic symbols, character
recognition, shape analysis, video indexing, and object
recognition, etc. Because of the complexity of the assembly
relational model, graph matching in assembly planning is
very difficult. In this paper, a novel approach to graph
matching is proposed. We use a so-called partial assembly
constrain satisfying strategy to dynamically prune impro-
per typical CSBATs, in which two assemblies or
subassemblies are determined to be unmatched, without
the necessity to check their details. The partial assembly
constrain satisfying strategy is implemented by the
candidate CSBAT and the target CSBAT. Therefore, we
introduce the notions of candidate CSBAT and target
CSBAT.

Definition 1 Let T0=(V0, E0) and T1=(V1, E1) be two
CSBATs. T0 is the CSBAT of a typical assembly stored in
the typical plan base and T1 is one of the subassemblies of
the provided assembly. Given u, v∈V0 and any bijection φ:
V0→V1, T0 is called the candidate CSBAT of T1, if φ
satisfies the following conditions simultaneously:

(a) If u∼v, then φ(u)∼φ(v), and if u is the parent of v, then
φ(u) is the parent of φ(v)

(b) If u is a leaf node, then u and φ(u) must have the same
part type, else u and φ(u) have the same connection
type

Definition 2 Let T0=(V0, E0) be the candidate CSBAT of
T1=(V1, E1) and A0=(P0, C0, M0), and A1=(P1, C1, M1) be
the CSBARMs of T0 and T1, respectively. Given u,
v∈(P0∪C0), and bijection φ: (P0∪C0)→(P1∪C1), any
transformation (a series of translations and rotations) f:
M0→M1, T0 is called the target CSBAT of T1 if φ, f
satisfies the following conditions simultaneously:

(a) If there are contacts between u and v, then there must be
the same mating type and connection type between
φ(u) and φ(v) as those of u and v

(b) If d(u, v) is the mating direction of u and v, then d(φ(u),
φ(v))=f(d(u, v))

(c) If m(u, v) is the mating feature of u and v, then m(φ(u),
φ(v))=f(m(u, v))

Figure 4 shows an example of retrieving plans from the
typical plan base. Figure 4a is the provided assembly and
Fig. 4b,c are two cases stored in the base. According to
definition 1 and definition 2, we know that the CSBATs
shown in Fig. 4e,f are the candidate CSBATs of that in
Fig. 4d, but only the CSBAT in Fig. 4f is the target CSBAT
of the provided assembly.

In order to retrieve plans efficiently, we must organize
the cases in the bases appropriately. Each case in the typical
base is a solved assembly problem. Since the typical base
may be big and non-linear, we must have a metric to choose
the most possible case to be compared with the problem. A
formula is used to calculate a priority number while
comparing cases. The formula uses the information on

whether the case matched, whether the matched case was
successful in the past, and how often this case is selected in
general. For a case A, we calculate its priority as follows:
priority Að Þ ¼ NumofSuccess

NumofSuccessþNumofFailure : The priority mea-
sures the number of successes over the total number of
times that the case is selected. If the case is very successful,
the chance of selecting it should be increased; if the case
has had many failures, the chance of selecting it should be
decreased. By considering the success and failure history of
a case, the system selects not only the most similar, but also
the most useful case for a problem. An example of a case
stored in the typical base is shown in Table 2. Each case ID
corresponds to the CSBAT and CSBARM of a solved
assembly.
Now we introduce the algorithm of retrieving plans from
the typical plan base. The first step of retrieval is to find all
candidate CSBATs for the input CSBAT, then to determine
which case is its target CSBAT, and finally to adjust the
plans for the provided assembly. The algorithm is described
as follows:

– Algorithm: Retrieve_Typical_Plans (T, M)
– Input: T is the CSBATof the provided assembly, andM

is its CSBARM
– Output: Partial assembly sequences

Step 1.
Push the provided T into TestTreeStack;

Step 2.
Check if TestTreeStack is null or not: if yes, the typical
plans retrieval of the assembly has been finished
successfully; else, pop a CSBAT as Tcur and letMcur be
the CSBARM of Tcur;

Step 3.
Compute the nodes number and the maximum level of
Tcur, then compare with each Tcase that is the CSBAT
of the case stored in the typical base, if there exists
Tcase that has the same number of nodes, root
connection type, and maximum level to those of
Tcur, then push Tcase to CandidateTreeStack for further
checking according to the case priority number, else,
push the child CSBATs of Tcur into TestTreeStack, and
go to step 2;

Step 4.
Check if CandidateTreeStack is null or not: if yes, there
is no matching case in the typical base, go to step 2;
else, pop a CSBAT as Tc;

Table 2 An example of case parameters

Case
ID

No. of
nodes

Root
connection
type

CSBAT
max level

Priority Success Failure

... ... ... ... ... ... ...
1000 10 Key 5 0.900 18 2
1001 5 Bolt–Nut 3 0.910 182 18
1002 5 Bolt–Nut 3 0.610 122 78
... ... ... ... ... ... ...
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Step 5.
Check whether bijection φ exists, for φ: Tcur→Tc, ∀u,
v∈Tcur, and u∼v, satisfying the conditions: (a)
φ(u)∼φ(v), and (b) u and φ(u) have the same part

type or connection type, if yes, Tc is a candidate
CSBAT of Tcur and let Mc=Mc; else, go to step 4;

Step 6.
Check whether bijection φ and f exist, for φ: (Pcur∪
Ccur)→ (Pc∪Cc), f:Mcur→Mc, u, v∈(Pcur∪Ccur), satisfy-

Fig. 5 a The provided assembly for retrieval. b All cases stored in the typical plan base
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ing the conditions: (a) mating type and connection type
between φ(u) and φ(v) is the same as those of u and v,
(b) d (φ(u), φ(v))=f(d(u, v)), and (c) m(φ(u), φ(v))=f(m
(u, v)); if yes, it is a target CSBAT of Tcur; else, go to
step 4;

Step 7.
Simplify the assembly model M and make the
subassembly corresponding to Tcur be a super-part,
adjust plans of Tc that are stored in the base to Tcur, get
the partial plans of super-part Tcur, go to step 2;

Step 8.
Output partial assembly sequences with their super-
part ID.

An example is provided to illustrate the procedure of
retrieval from the typical base. The provided assembly with
its CSBATand CSBARM is shown in Fig. 5a, and the cases

stored in the typical base are shown in Fig. 5b. The two
cases shown in Fig. 5b are the candidate CSBATs of the
provided assembly. In order to simplify the graphs, not all
labels with the edges or nodes are specified in Fig. 5.
Figure 6 shows how to determine which candidate CSBAT
is a target CSBAT.

3.7 Standard plans retrieval and modification

The problem of standard plans retrieval and modification is
also a problem of matching the CSBAT and CSBARM.
Therefore, the approach to matching is similar to that of
typical plans retrieval. However, it is different in some
aspects. The CSBAT to retrieve plans from the standard
base is transformed into a primitive CSBAT first. That
means each child CSBAT is looked at as a whole, and the
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Fig. 6 An example of retrieval from the typical plan base
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assembly constraints between parts in different child
CSBATs are transformed into assembly constraints be-
tween child CSBATs. Figure 7 shows an example of
transforming a non-primitive CSBAT to a primitive
CSBAT.

In KBASP, the stored plans for a primitive CSBAT are
returned by searching the standard plan base according to
its connection type and mating features between the
composed subassemblies or parts. For instance, for the
assembly shown in Fig. 7a, its primitive CSBAT SCREW
(screw1, screw2) [subasm1, cap] shown in Fig. 7b matches
the connection SCREW(s1) [p1, p2] in the standard plan
base. It is noted that the provided CSBAT has two
connectors: screw1 and screw2. These two connectors are
grouped, but they do not affect the matching between these
two CSBATs. The subasm1 SCREW(screw3) [bottom,
block] can also obtain the plans from the standard base.

4 Application examples

In order to illustrate the efficiency of the planner, we
present a more complicated example Gear Case, which
consists of the 32 parts shown in Fig. 8a,b. In some ways, it
is a bad case for any purely geometric assembly, such as
GRASP, that generates a large amount of AND/OR graphs,
since the eight bolt–nuts assemblies can be placed in any
order [8]. It is also difficult for any planner based on the
cut-set approach, since there are so many candidate
subassemblies existing in the first decomposition. The
CSBARM of Gear Case is shown in Fig. 8c. In order to
simplify the graph, the connectors constraining the same
parts, such as bolt–nut1∼8, are combined in a single node.
The label for each edge is omitted for the same reason. To
build the plans for the assembly, the CSBARM and the
geometric information of the solid model are input into the
KBASP system.

In the KBASP system, the first step to assembly
planning for the Gear Case is to generate the CSBAT
hierarchy by decomposing its CSBARM with respect to
grouped connectors or a single connector. There exist
more than one CSBAT for this assembly. Therefore, we
use the proposed selection indices in Section 3.1 to select
the preferred CSBAT out of multiple CSBATs. By using
the algorithm for the generation of the CSBAT, the first
selected connector group that can be disassembled is the
bolt–nut set: {bolt-nut1∼8}. {cap}, which is one sub-
assembly with respect to {bolt-nut1∼8}, consists of only
one part, so it does not need to be subdivided further.

However, the other subassembly composed of 15 parts can
be subdivided with the Mating type connection. With
respect to Mating1, there are two subassemblies {bottom,
bear3, bear4, key2, shaft2, gear2, bcap3, bcap4} and

Screw(screw1, screw2)
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a b

Fig. 7 a Non-primitive CSBAT. b Primitive CSBAT
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{bear1, bear2, key1, shaft1, gear1, bcap1, bcap2}. The
latter subassembly can be subdivided into {bcap1},
{bcap2}, {key1, shaft1, gear1} with respect to {bear1,
bear2}, and {key1, shaft1, gear1} is subdivided into
{shaft1} and {gear1} with respect to {key1} furthermore.
The former subassembly {bottom, bear3, bear4, key2,
shaft2, gear2, bcap3, bcap4} is subdivided into {bottom}
and {bear3, bear4, key2, shaft2, gear2, bcap3, bcap4}
withMating type connection. Then, the CSBATof {bear3,
bear4, key2, shaft2, gear2, bcap3, bcap4} can be
generated as that of {bear1, bear2, key1, shaft1, gear1,
bcap1, bcap2}. The CSBAT is shown in Fig. 8d.

Subsequently, the KBASP system constructs the assem-
bly plans for the Gear Case in three ways. Because the
Shaft-Gear is a typical assembly stored in the typical base,
the plans of subassemblies {bear1, bear2, key1, shaft1,
gear1, bcap1, bcap2} and {bear3, bear4, key2, shaft2,
gear2, bcap3, bcap4}, which are denoted as Shaft-Gear1
and Shaft-Gear2, respectively, can be retrieved from the
typical base. For the mating connections Mating1 and
Mating2, they do not find matched cases both in the typical
nor the standard plan base. So the plans for Subasm1 are
constructed by geometric reasoning. As to the primitive
CSBAT Bolt–Nut [bolt-nut1∼8] {Subasm1, cap} is re-
trieved and adapted from the case in the standard plan base.
The plans of Gear Case are shown in Fig. 8e.

In order to analyze the efficiency of the knowledge-
based approach, a set of experiments was contrived using
an assembly as shown in Fig. 9, which simply consists of
N+1 plates in a horizontal line. Each plate has a Bolt–Nut
connection with its neighbors, so there are N primitive
Bolt–Nut connections. Each plate may be simply removed
by the disassembly of the bolt and nut that constrains the
plate. The simple assembly was chosen because it is easy
to increase the number of parts.

As in the analysis, the knowledge base in the planner
was disabled and separate runs were performed. In real
assemblies, CSBATs with very large numbers of child
CSBATs usually contains many repetitions of the same
type CSBATs, rather than many different CSBATs. In this
section, we study the behavior of the planner on a CSBAT
with many repeated child CSBATs, and demonstrate that
the use of the knowledge base can drastically improve
performance in that case. The KBASP has been imple-
mented partially with programming in C++ based on the
Dened ENVISION system on a Pentium-IV_compatible
PC. The graph in Fig. 10 compares the run-times with and
without the use of the knowledge base. In the graph, we see
exponential growth in the run-times without the use of the
knowledge base. When the knowledge base is turned on,
the performance of the planner improves significantly. In
this case, plans do not have to be generated separately for
each Bolt–Nut connection. After the first run, the set of
plans is simply retrieved from the knowledge base. This
produces a relatively small speed-up in this example,
because the similar structures are small. It is noted that
there is still a possibility of doing exponential work, as
different combinations of child CSBATs must be con-
sidered. The speed-up gained by the use of the knowledge
base may be less dramatic than in this case. But the
influence of the generations of plans for complicated
assemblies is great. The KBASP system has planned for the
assemblies of a variety products, including several
industrial examples, such as Wave-Hand (Fig. 11) and
Toy Motor Grab (Fig. 12). The application shows that the
knowledge-based approach can reduce the computation
complexity drastically and obtain more feasible and
practical plans.
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5 Conclusions and future work

The knowledge-based approach proposed in this paper
solves the problem of assembly sequence planning by
integrating geometry-based reasoning with knowledge-

based reasoning. This realization assists in significantly
reducing the complexity and amount of planning required
to determine more feasible and practical sequences for the
assembly of production components. To verify the validity
and efficiency of the approach, a variety of assemblies,
including some complicated products from the industry, are
tested in our KBASP (knowledge-based assembly se-
quence planning system). With the KBASP that we have
developed, we reach three goals:

– Proposed the conception of CSBATs (connection-
semantics-based assembly trees) and gave a uniform
representation of assemblies that containing all of the
information required for assembly sequences planning

– The design of an automated, systematic, and user-
friendly method for generating assembly sequences

– The easy selection by the user of the most efficient and
practical assembly sequences

Although KBASP generates a general-purpose geo-
metric reasoning with the knowledge about how to build
specific structure, there remains much to do. Future work
should involve two main aspects:

– More non-geometric information, such as the assembly
intents, should be utilized in planning

– Find more robust assembly coefficients by applying
the approach to more various assembly environments,
and find better CSBATs by lifting or extending the
selection criteria.
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