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Abstract
We present an efficient and accurate algorithm for self-collision detection in deformable models. Our approach can perform
discrete and continuous collision queries on triangulated meshes. We present a simple and linear time algorithm to perform the
normal cone test using the unprojected 3D vertices, which reduces to a sequence point-plane classification tests. Moreover, we
present a hierarchical traversal scheme that can significantly reduce the number of normal cone tests and the memory overhead
using front-based normal cone culling. The overall algorithm can reliably detect all (self) collisions in models composed of
hundreds of thousands of triangles. We observe considerable performance improvement over prior continuous collision detection
algorithms.
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1. Introduction

Fast and accurate collision detection is important for generating
realistic deformations. At a broad level, prior work can be clas-
sified into discrete collision detection (DCD) methods that check
for collisions at an instant of time, and continuous collision de-
tection (CCD) techniques that check for colliding regions within
a time interval. The latter are used to avoid missing any collisions
and to perform reliable simulations by maintaining intersection-free
meshes.

Complex mesh models composed of hundreds of thousands of
triangle primitives are frequently used in cloth or finite element
method (FEM) simulation. Collision detection is regarded as one
of the major bottlenecks in these applications and it is important to
accurately check for collisions between all the primitives [BFA02,
BEB12, Wan14, TTWM14].

Some of the commonly used algorithms use bounding volume hi-
erarchies (BVHs) to accelerate collision detection. These techniques
work well in terms of inter-object collision detection. However,
self-collision checking in deformable models can be challenging

as many adjacent or nearby primitives of a deforming mesh are in
close proximity and not culled by bounding volume tests (BVTs).
Even if a mesh is intersection-free, checking all the primitives for
self-collisions can be expensive.

The most commonly used methods for self-collisions are based
on normal cones (NCs) for DCD [VT94, Pro97, SPO10]. How-
ever, the computational overhead of NC tests during BVH traversal
can be high. This approach has been extended to CCD [TCYM09],
but the additional cost of performing continuous NC culling slows
down the overall CCD algorithm due to the quadratic complexity of
the continuous contour test. Other techniques include energy-based
methods [BJ10, ZJ12] and radial-based CCD culling for skeletal
models [WLH*13]. However, self-collision culling continues to re-
main a bottleneck, especially for CCD between arbitrary deformable
models.

Main Results: We present a fast and accurate approach for self-
collision detection in triangulated models. Our formulation is based
on NCs and is applicable to DCD as well as CCD. In order to
reduce the overhead of NC tests during BVH traversal, we present
two novel algorithms:
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Figure 1: Improved collision culling. We demonstrate the bene-
fits of our self-collision algorithm on the Funnel benchmark (64K
triangles). The three curves highlight the culling efficiencies of var-
ious algorithms. These include prior schemes that do not perform
self-collision culling (i.e. AABB-only) versus two variants of our
algorithm. Our novel CCD algorithm can significantly reduce the
number of false positives.

1. Linear time NC test using unprojected contours: We present
a novel contour test algorithm that can directly perform the
queries on the 3D vertices without computing any projec-
tions on a plane. Our formulation reduces to performing point-
plane orientation tests on the 3D vertices. The resulting com-
putation is simple and accurate, and reduces to evaluating
the sign of algebraic expressions for DCD as well as CCD
(Section 3).

2. Front-based NC culling: We present an incremental BVH
traversal algorithm that combines the NC test with the BVT tree
(BVTT) front computation. This reduces the hierarchy traversal
overhead based on spatial and temporal coherence, and also the
memory overhead (Section 4).

The resulting algorithms are simple to implement and can accu-
rately detect all the collisions. It has no pre-processing overhead
and can perform fast collision queries on complex benchmarks on a
single CPU core (Section 5). We observe an order of magnitude im-
provement in the performance of the NC tests over prior approaches.
We also highlight the overall speedups in cloth simulation due to
our novel CCD algorithm.

2. Related Work

In this section, we give a brief overview of prior work on collision
detection between deformable models. The simplest culling algo-
rithms use BVHs that are based on k-DOPs or AABBs. These can
be combined with self-collision culling techniques [Pro97, MKE03,
TCYM09, SPO10, ZJ12].

Low-level culling: Many low-level culling techniques have been
proposed to reduce the number of elementary tests between the
triangle pairs for CCD, such as removing redundant elementary
tests [GKJ*05, CTM08, WB06, TMT10a, TMY*11] or using
bounding volumes of the primitives [HF07]. Our approach can be
combined with these low-level acceleration techniques.

Clustering: Many mesh decomposition and clustering strategies
have been proposed to compute tighter fitting hierarchies to im-
prove the culling efficiency. Most of these techniques are used as a

pre-process [EL01, WB14]. Schvartzman et al. [SPO10] presented
a self-collision test tree (SCTT) that is pre-computed to acceler-
ate the self-collision queries for general deformable models. By
executing hierarchically, their cost can be reduced to O(1). Wong
et al. [WLH*13] presented a continuous self-collision detection al-
gorithm for skeletal models and extended it to check for collisions
between a deformable surface and a simple solid model [WC14].
He et al. [HOEM15] presented a dynamic clustering algorithm for
topology changing models. Our approach can be easily combined
with these methods to obtain the fastest CCD query performance.

Reliable collision queries: Most earlier methods for DCD and
CCD are implemented using floating point computations and nu-
merical tolerances. However, numerical errors in arithmetic op-
erations, along with the tolerances, can impact their accuracy,
especially for elementary tests. Recently, many reliable algo-
rithms have been proposed for elementary tests based on ex-
act arithmetic operations [BEB12, TTWM14] or conservative
float-point computation with tight bounds [Wan14, WTTM15]. It
is also important to ensure that the self-collision culling tests are
reliable.

Front-based traversal: BVTT front tracking has been used to
accelerate collision detection [LC98]. By performing tests using
the BVTT front generated from the last time step, these methods
reduce the runtime overhead and make it easier to parallelize on
CPUs and GPUs [TMLT11, ZK14]. However, the memory overhead
for storing the BVTT front can be high. We combine our NC test
with BVTT-based front to significantly reduce the time and storage
complexity.

3. Unprojected Normal Cone Test

In this section, we introduce the notation and present our unprojected
NC test for self-collision culling.

3.1. Background and notation

In this paper, we consider DCD as well as CCD problems on models
represented as 2-manifold triangle meshes, possibly with bound-
aries. Our approach uses the mesh connectivity information to per-
form collision culling. DCD deals with checking whether any dis-
tinct triangle primitives overlap at a given time instant. On the other
hand, CCD algorithms model the motion of each object or triangle
using a continuous trajectory between the successive instants of a
simulator and check for collisions along the trajectory. Our CCD
culling algorithm also uses linearly interpolating trajectories [Pro97,
BFA02].

We use the following notation in the rest of the paper: Lower case
letters in normal fonts (e.g. a, b and ai) represent scalar variables
and upper case letters (e.g. L and J (t)) represent scalar functions.
Lower case letters in bold face fonts (e.g. a and bt) represent vec-
tor quantities and points, and upper case letters in bold face fonts
(e.g. L and J(t)) represent vector-valued functions. The operators
‘∗’, ‘·’ and ‘×’ denote the usual scalar multiplication, dot prod-
uct and cross product, respectively. We use following acronyms in
the rest of the paper: PPC: stands for point-plane classification;
BV, BVH, BVTT: stand for bounding volume, BVH and BVTT,
respectively.
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Figure 2: Normal cone. For an input triangle mesh (a), its contour
edges are defined by an order list of vertices v′

1, v′
2, . . . , v′

n (the red
arrows). Its corresponding normal cone CN (α, l) contains all the
normal vectors of the triangles (b), where l is the axis and α is the
apex angle.

3.2. Normal cone test

Some of the widely used algorithms for self-collision detection
are based on the NC test [VT94]. Given a continuous surface, S,
bounded by a contour, C, a sufficient criterion for no self-collision
is based on the following two conditions:

1. Bounds on the normals: There is a vector, v, such that (N · v) >

0 for every point of the surface, S, where N(S) is the normal
vector at the point S on the surface.

2. No boundary self-intersections: The projection of the contour
C along the vector v does not have any self-intersections on the
projected plane.

The first condition is called the surface normal test and the sec-
ond condition is also known as the contour test. Provot [Pro97]
presented an efficient method to evaluate the first condition based
on NCs, which corresponds to a bound on the Gauss map of
S. The NC for a mesh of triangles can be computed by com-
bining the normal vectors of individual triangles. Given an input
NC CN (α, l) bounds, all the normal vectors of the triangles of a
given triangle patch, where α is the apex angle and l is the mid-
dle axis of the cone (see Figure 2). The NC test has been used for
DCD [Pro97, SPO10], and has been extended to CCD by Tang et al.
[TCYM09].

Complexity of contour tests: In practice, the contour test tends
to be more expensive as compared to surface normal test and can
take up to 60% of the running time [SPO10] for DCD computa-
tions. This test typically involves computing a projection of the
contour of S and checking for self-intersections on the resulting
plane. Recently, Schvartzman et al. [SPO10] used a line-search
star-shaped test to detect star-shaped projection, which guarantees
that there will be no self-intersections. Furthermore, they used a
pre-computed SCTT to accelerate the computation. As a result, the
resulting algorithm has linear time complexity in the number of con-
tour edges. However, the projection computations can be expensive
and take up to 37% of total running time [SPO10]. Furthermore,
they are prone to floating-point errors and can result in accuracy
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Figure 3: Star-shaped test. The projection plane is defined by a
point p and a normal vector l. A star-shaped contour polygon in
the plane {p, l} has: (1) at least one kernel point o located inside
the half-spaces of all the contour edges and (2) any ray starting
from o along the direction r can intersect the boundary only once.
Both these conditions can be tested by computing the orientation of
a point with respect to different lines.

issues during the contour tests. Some prior self-collision algorithms
either omit the contour test computation for certain cases [VT94] or
use some approximations [Pro97]. Heo et al. [HSK*10] described
an approximate scheme to avoid the projection computation.

Continuous queries: It is not clear whether the linear time al-
gorithm for contour test in [SPO10] extends to CCD. The resulting
formulation based on kernel tests reduces to checking for overlaps
between intervals, as opposed to line intersections for DCD. In-
stead, the only known algorithm for contour tests for CCD reduces
to performing O(n2) EE elementary tests, where n is the number of
contour edges [TCYM09]. This is based on projecting the continu-
ously deforming edges to a plane and checking each pair for overlap
by solving a cubic equation. In such cases, the contour test becomes
a major bottleneck in the overall algorithm.

3.3. Contour test using point-plane classification

We present a novel algorithm for the contour test that does not
involve any projection computations. The resulting contour test can
be performed in O(n) time for DCD as well as CCD, where n is
the number of contour edges in C. Furthermore, our algorithm only
needs to perform sign evaluation in terms of 3D point-plane side
tests, i.e. determining the orientation of a point with respect to a
plane in 3D.

We initially present our contour test for DCD, and later extend it
to CCD computations. We first describe the notion of a PPC-based
contour test on a 2D projection plane, and then extend it to the
unprojected 3D contour points.
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Figure 4: Intersection test. The two different cases (a) and (b), in
which there is an intersection between the ray {o, r} and a contour
edge {v1, v2}, can be tested by computing the orientations of points
with respect to different lines.

Given a contour, we first project the points onto a projection
plane, which is defined by a point p and a normal vector l and
represented as {p, l} (see Figure 3a). If the projected contour is a
star-shaped polygon, it guarantees no self-intersections [SPO10].
The star-shaped test is performed in two steps:

1. Kernel test: There is at least one kernel point (e.g. point o )
located at the inside of the half-spaces of all the contour edges
(Figure 3b).

2. Intersection test: A ray starting from the kernel point in the
direction r can intersect the boundary only once (Figure 3c).

We assume that all the contour edges are oriented in a clockwise
or counter-clockwise direction with respect to l.

We define a scalar function Side(a, b, c, l) and a sign evaluation
function SideSign(a, b, c, l), where a, b, c are three points that lie
on the projection plane {p, l}:

Side(a, b, c, l) = ((a − c) × (b − c)) · l,

SideSign(a, b, c, l) =
⎧⎨
⎩

1, Side(a, b, c, l) > 0,

−1, Side(a, b, c, l) < 0,

0, Side(a, b, c, l) = 0.

Note that the choice of p does not affect the values of Side() and
SideSign().

The kernel test on the projected plane is performed using PPC
between o and all the projected contour edges. For an edge defined
by the two vertices v1 and v2, the orientation between them is
computed using SideSign(o, v1, v2, l). Therefore, the kernel test
can be expressed as checking the signs of n algebraic expressions1:

SideSign(o, v1, v2, l) == SideSign(o, v2, v3, l)

== . . . == SideSign(o, vn, v1, l),

where v1, v2, . . . , vn are the projected vertices of the contour.

1We ignore the case that SideSign(. . .) = 0, as the test returns an answer of
false.

The intersection test is also performed using sign evaluations. Let
us consider the cases (a) and (b) (Figure 4), in which there is an
intersection. For both cases, v1 and v2 lie on the different sides of
the ray {o, r}, and side of o with respect to −−→v1v2 is the same side of
v2 with respect to the ray. We can check for these conditions based
on evaluating the following expressions:

SideSign(o, v1, v2, l) = SideSign(v2, o, o + r, l) and

SideSign(v1, o, o + r, l) �= SideSign(v2, o, o + r, l).

Only when both conditions are fulfilled, we count an intersec-
tion between the ray and the contour edge. The idea behind the
two equations is that the first equation is to ensure that there is
an intersection between a line (defined by o and r) and a line
segment (defined by v1 and v2). The second equation is to en-
sure that the intersection is on the right side of the line (i.e. on
the ray).

We compute the intersection number between the ray and each
contour edge. The intersection test holds only when the intersection
number equals to 1. For the case that the intersection number is
greater than 1, the test can directly return a false answer.

Overall, the kernel test and the intersection test are reduced to
computing dot and cross products, and these tests perform PPC
using SideSign() functions.

3.4. Unprojected contour test

The contour test for the 2D projected vertices can be extended to
directly operate on the unprojected 3D contour vertices, i.e. the orig-
inal vertices of the input mesh contours. Let a′, b′, c′ be the original
(unprojected) 3D contour vertices, and a, b, c be the corresponding
projections on the projection plane {p, l}. We use the following the-
orem to perform conservative contour tests on the original vertices:

Unprojected orientation test theorem: Given three 3D points
a′, b′, c′, and a projection direction l. Let their projections on
a plane perpendicular to l be a, b, c, respectively. In this case,
SideSign(a′, b′, c′, l) = SideSign(a, b, c, l).

Proof. By the definition of a, b, c, we have:

a = a′ + u ∗ l; b = b′ + v ∗ l; c = c′ + w ∗ l,

where u, v and w are three scalars. By substituting them into the
definition of Side(a, b, c, l), we obtain:

Side(a, b, c, l)

= ((a − c) × (b − c)) · l

= (((a′ − c′) + (u − w) ∗ l)

× ((b′ − c′) + (v − w) ∗ l)) · l

= ((a′ − c′) × (b′ − c′)) · l

= Side(a′, b′, c′, l).

�
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1: // Prepare parameters for kernel test and intersection test.

2: o= ∑n1 v
′
i

n ; l is middle axis of input normal cone CN
3: if l parallel to vector {0,1,0} then
4: r= {1,0,0}
5: else
6: r= l×{0,1,0}
7: end if
8: // Initialize intersection number to zero.
9: intsNum= 0
10: // Get side sign at the first contour segment.
11: s0 = SideSign(o,v′1,v

′
2, l)

12: if s0 == 0 then
13: return false;
14: end if
15: // Perform kernel test and intersection test on each contour segment.
16: for each edge v′i ,v

′
i+1 do

17: // Perform side test.
18: if s0 �= SideSign(o,v′i ,v′i+1, l) then
19: return false;
20: end if
21: // Perform intersection test.
22: s1 = SideSign(v′i ,o,o+ r, l)
23: s2 = SideSign(v′i+1,o,o+ r, l)
24: if s1 == 0 s2 == 0 then
25: return false; // Can’t determine the intersection.
26: end if
27: if s2 = s0 s1 �= s2 then
28: intsNum++
29: if intsNum> 1 then
30: return false; // More than one intersection.
31: end if
32: end if
33: end for
34: return true;

Algorithm 1 UnprojectedContourTest(CN ): Perform unprojected
contour test on the boundary contour of a given normal cone CN .
Input: A normal cone CN(α, l), where α is the apex angle, and l
is the axis of the cone, and its boundary contour is defined by an
ordered list of vertices, i.e., v′1,v

′
2, ...,v

′
n.

Output: true for no self-intersection on the projected contour,
false otherwise.

Based on this theorem, the kernel test and intersection test, which
are based on Side(), can be directly evaluated using the original 3D
coordinates of the contour vertices. As a result, there is no need
to perform projection computations for the conservative star-shape-
based contour test.

The pseudo-code for the unprojected contour test is given in
Algorithm 1. Given an input NC CN (α, l) bounds, all the normal
vectors of the triangles of a given triangle patch, where α is the apex
angle and l is the middle axis of the cone. The boundary contour of
CN (α, l) is defined by a ordered list of vertices, i.e. v′

1, v′
2, . . . , v′

n.
Our algorithm for the contour test will return true if there are no
self-intersections on the projected contour, but will return false
otherwise. We first define the parameters to perform the kernel test
and intersection test (Lines 1–9, Algorithm 1).

� Projection direction l: We use the axis l of the input NC as the
projection direction.

� Kernel point o: We use the average of the input contour vertices

as the kernel point, i.e. o =
∑n

1 v′
i

n
.

� Ray direction r: In theory, it can be any vector perpendicular to
l. In practice, we choose it to be l × {0, 1, 0} if l is not parallel
to vector {0, 1, 0}; otherwise, we set r to be {1, 0, 0} (Lines 3–7,
Algorithm 1).

After specifying all the parameters, we perform the kernel tests
and intersection tests over all the contour edges (Lines 9–34). The
intersection test is performed at Lines 21–32. If the intersection
number exceeds 1, the algorithm returns false. The contour test
returns true only if the kernel test and the intersection test return
true.

Query performance: The worst case for the unprojected contour
tests occurs when it returns a true answer and there is no early exit.
In that case, it perform 3n SideSign() evaluations for DCD, where
n is the number of contour edges. Each SideSign() evaluation
requires one cross product and one dot product computation
between two 3D vectors. So, the total operation count is bounded
by 3n cross products and 3n dot products for each contour test.

1: if IsLeaf(N) then
2: return; // Traversal terminated.
3: end if
4:
5: if ApexAngle(CN ) < π then
6: if UnprojectedContourTest(CN ) = true then
7: return; // The corresponding mesh has no self-collisions.
8: end if
9: end if
10: // Check the descendants.
11: SelfCollide(N→ LeftChild)
12: SelfCollide(N→ RightChild)
13: Collide(N→ LeftChild, N→ RightChild)

Algorithm 2 SelfCollide(N): Normal Cone Culling using Unpro-
jected Contour Test (NC). By traversing the BVH recursively,
meshes that satisfy normal cone test are culled.
Input: A node N on the BVH. CN is the normal cone associated
with N.
Output: No return value.

3.5. Normal cone culling

Based on Algorithm 1, the overall algorithm for NC culling is shown
in Algorithm 2. Our algorithm involves no pre-computation and
updates a BVH to perform hierarchical computations. The self-
collision checking starts at the root node of the BVH, and traverses
in a top-down manner. For a node N of the BVH, and its associated
NC CN , we check whether the apex angle of CN is less than π

and also perform the unprojected contour test. If these two tests are
satisfied, then we do not need to traverse to the children of N to
check for self-collisions.

3.6. Normal cone culling for CCD

The contour test and NC culling algorithms described above can be
extended to CCD. One of the main issues is to compute a bound
on the surface normals that varies during the time interval based
on linearly interpolating triangle vertices. Moreover, we need to

c© 2017 The Authors
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perform the unprojected contour test on the continuously varying
vertices of the contour. We compute a conservative normal bound
for each deforming triangle, and merge these bounds in a bottom-up
manner on the BVH to update the apex angles of all NCs. In order
to perform a continuous unprojected contour test, we assume that
a vertex pi is moving with the constant velocity vi during a given
time interval [0, 1].

We first define the function CSide1() as

CSide1(a, b, c, l) = ((a − c) × (b − c)) · l,

where b = b0 + vb ∗ t , c = c0 + vc ∗ t . However, a and l are un-
changed during the time interval [0, 1]. b0 and c0 are the position of
two vertices at t = 0. vb and vc are their moving velocities during
the time interval (t ∈ [0, 1]). Therefore:

CSide1(a, b, c, l)

= ((b0 + vb ∗ t − a) × (c0 + vc ∗ t − a)) · l

= k0 ∗ B2
0 (t) + k1 ∗ B2

1 (t) + k2 ∗ B2
2 (t),

where B2
i (t)′s are second-order polynomials in Bernstein basis.

The detailed derivation of ki is as follows:

k0 = ((b0 − a) × (c0 − a)) · l,

k1 = ((vb × (c0 − a) + (b0 − a) × vc) · l
2

+ ((b0 − a) × (c0 − a)) · l,

k2 = ((b0 − a) × (c0 − a)) · l

+ (vb × (c0 − a) + vc × (b0 − a)) · l

+ (vb × vc) · l.

With this representation, the value of CSide is bounded based on
the coefficients k0, k1 and k2 for 0 ≤ t ≤ 1. Based on the formulation
of CSide1(), we define:

CSideSign1(a, b, c, l) =
⎧⎨
⎩

1, k0 > 0, k1 > 0, k2 > 0,

−1, k0 < 0, k1 < 0, k2 < 0,

0, otherwise.

This formulation is conservative, but provides a sufficient condition
to perform the kernel and intersection tests for CCD.

For the case a that is moving under constant velocity, i.e.
a = a0 + va ∗ t , and b, c are unchanged during the time interval,
we define the function:

CSide2(a, b, c, l)

= ((a0 + va ∗ t − c) × (b − c)) · l.

Similarly, the value of CSide2(a, b, c, l) is bounded by two con-
stants for all t ∈ [0, 1]:

k′
0 = ((a0 − c) × (b − c)) · l

k′
1 = ((a0 + va − c) × (b − c)) · l.

So, we define:

CSideSign2(a, b, c, l) =
⎧⎨
⎩

1, k′
0 > 0, k′

1 > 0,

−1, k′
0 < 0, k′

1 < 0,

0, otherwise.

By replacing the functions SideSign() in Algorithm 1 with new
sign functions CSideSign1() (Lines 12 and 19) and CSideSign2()
(Lines 23 and 24), respectively, the contour test algorithm for DCD
can be easily extended to perform conservative contour tests during
the time interval [0, 1] for CCD (as shown in Algorithm 3).

1: // Prepare parameters for kernel test and intersection test.

2: o= ∑n1 v
′
i t=0
n

3: l is middle axis of input normal cone CN
4: if l parallel to vector {0,1,0} then
5: r= {1,0,0}
6: else
7: r= l×{0,1,0}
8: end if
9: // Initialize the intersection number to zero.
10: intsNum= 0
11: // Get side sign at the first contour segment.
12: s0 = CSideSign1(o,v′1,v

′
2, l)

13: if s0 == 0 then
14: return false;
15: end if
16: // Perform kernel test and intersection test on each contour segment.
17: for each edge v′i ,v

′
i+1 do

18: // Perform side test.
19: if s0 �= CSideSign1(o,v′i ,v′i+1, l) then
20: return false;
21: end if
22: // Perform intersection test.
23: s1 = CSideSign2(v′i ,o,o+ r, l)
24: s2 = CSideSign2(v′i+1,o,o+ r, l)
25: if s1 == 0 s2 == 0 then
26: return false; // Can’t determine the intersection.
27: end if
28: if s2 = s0 s1 �= s2 then
29: intsNum++
30: if intsNum> 1 then
31: return false; // More than one intersection.
32: end if
33: end if
34: end for
35: return true;

Algorithm 3 UnprojectedContourTestForCCD(CN ): Perform un-
projected contour test on the boundary contour of a given normal
cone CN .
Input: A normal cone CN(α, l) where α is the apex angle, and l is
the axis of the cone, and its boundary contour which is defined by
a ordered list of vertices, i.e., v′1,v

′
2, ...,v

′
n.

Output: true for no self-intersection on the projected contour,
false for undeterminable.

Query performance: In the worst case, the unprojected con-
tour test for CCD performs n CSideSign1() and 2n CSideSign2()

c© 2017 The Authors
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evaluations, where n is the number of contour edges. Each
CSideSign1() evaluation requires eight cross products and six dot
products computation between two 3D vectors. Each CSideSign2()
evaluation requires two cross products and two dot products. So, the
totally operation count is bounded by 12n cross products and 10n

dot products for each contour test.

4. Front-Based Normal Cone Culling

The hierarchical traversal algorithm based on NC tests presented
above can accelerate the performance of each NC test during the hi-
erarchical traversal. However, the resulting algorithm may perform
a large number of NC tests while handling complex benchmarks
represented using hundreds of thousands of triangles. In this sec-
tion, we present a novel front-based NC culling algorithm that can
significantly reduce the number of NC tests and traversal overhead.
Furthermore, it reduces the memory requirements of storing the
front.

The basic idea behind our algorithm is shown in Figure 5. For a
scene with deformable objects, we compute its BVH as shown in the
upper right corner of Figure 5. The self-collision detection algorithm
corresponds to the traversal of its BVTT, as shown in Figure 5.
The main goal of using BVTT is to compute the front during the
traversal from the previous frame [TMT10b, TMLT11]. By starting
the traversal of the current frame directly from the BVTT front, we
exploit the spatial and temporal coherence to reduce the traversal
cost. However, the memory overhead of this front can be high. For
example, for a mesh with 4 K triangles, it takes about 17 MB memory
to store the BVTT front between successive frames [TMLT11].

A node A ∗ B in the BVTT represents collision checking between
the nodes A and B of the given BVH. In the worst case, the BVTT
can have O(m2) nodes, where m is the number of nodes in the BVH.
The front-based algorithms keep track of a subset of BVTT that
corresponds to overlapping nodes during the current frame. Instead
of storing a global BVTT front (i.e. the thick line in Figure 5),
we decompose it into many sub-segments, as shown by the thin
line in Figure 5. Each sub-segment of the BVTT is associated with
an X ∗ X node, which corresponds to checking for self-collisions
among all the nodes beneath the internal node X of BVH. Instead
of traversing the children of this node hierarchically, we use our
NC culling algorithm to check for self-collisions. This is shown as
the segmented areas in Figure 5. In particular, we associate each
BVTT front sub-segment for X ∗ X with the internal node X on
the BVH.

We use the NC guided BVTT front tracking algorithm (Algo-
rithm 4), to significantly reduce the traversal overhead as well as
size of the front. By traversing the BVH recursively, if a node X

satisfies the NC test, its sub-segment can be directly skipped for
testing. Without the NC tests, we will need to track the nodes in this
sub-segment to perform self-collision detection. During the BVH
tracking, all the visited BVTT nodes are stored into the sub-segment
and reused for subsequent frames [TMLT11].

Based on the front-based NC algorithm, we obtain the benefits of
BVTT front-based culling as well as NC -based culling. With BVTT
front tracking, we can perform collision detection in an efficient
manner by utilizing temporal and spatial coherence. Furthermore,

C*C

f*g

A*A

B*C

d*f d*g

B*B

d*E E*E

d*i h*id*h

E*gE*f

h*f i*f h*g i*g

BVTT
A

B C

d E f g

h i

BVH

BVTT Front

Segmented BVTT 
Front

Figure 5: Normal cone-guided BVTT front tracking. We associate
each BVTT front sub-segment for X ∗ X with the internal node X

on the BVH. In order to perform self-collision culling, we use a
front-based normal cone traversal approach that uses the BVTT
front (Algorithm 4). By traversing the BVH recursively, if a node X

passes the normal cone test, its associated BVTT front sub-segment
is culled. Our approach can reduce the traversal overhead and
runtime memory footprint.

we combine them with the NC test, and this can significantly reduce
the size of the BVTT front, as we do not need to store the BVTT
front segments for the areas that are culled by our NC tests. Figure 6
highlights the reduced size of the NC-guided BVTT front for the
benchmark FlowingCloth. In this case, the size of our NC guided
BVTT front (the upper curve) is only about 8% of the conventional
BVTT front in [TMLT11] (the lower curve).

1: if IsLeaf(N) then
2: return; // Traversal terminated.
3: end if
4:
5: if ApexAngle(CN ) < π then
6: if UnprojectedContourTest(CN ) = true then
7: return; // The region is self-collision free.
8: end if
9: end if
10: // Check the descendants.
11: SelfCollide(N→ LeftChild)
12: SelfCollide(N→ RightChild)
13: FrontTracking(FrontN )

Algorithm 4 SelfCollideWithGuidedFrontTracking(N): a normal
cone guided BVTT front tracking algorithm for self-collision de-
tection (NC + Front).
Input: A node N on the BVH. CN is the normal cone associated
with N. FrontN is the BVTT front sub-segment associated with
node N.
Output: No return value.

4.1. Reliable computation

Our overall collision detection algorithm has three main steps: (1)
update BVs and NCs; (2) perform front-based BVH traversal and NC
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Figure 6: Front-based normal cone culling. We highlight the size of
our NCT-guided BVTT front (the lower curve), which is about 8%
of the conventional BVTT front in [TMLT11] (the upper curve) for
the benchmark FlowingCloth. Our algorithm can save considerable
memory and runtime overhead.

culling (Algorithm 4) and (3) perform elementary tests between tri-
angle pairs and may use lower level culling methods for acceleration.
For stage (1), we compute a conservative bound on the NCs during
the merging step. Stage (2) of our algorithm only needs to evaluate
the sign of algebraic expressions corresponding to dot products and
cross products, as well as other expressions; Stage (3) can be per-
formed with geometric exact elementary test algorithms [BEB12,
TTWM14], or conservative CCD algorithms [Wan14, WTTM15],
and these computations can be accelerated using floating-point fil-
ters. As a result, the overall collision detection algorithm is accurate
and not susceptible to errors.

5. Implementation and Results

In this section, we describe our implementation and highlight the
performance of our algorithm on several benchmarks.

5.1. Implementation

We have implemented our algorithms on a standard PC (Intel i7-
3770K CPU @3.5GHz, 4GB RAM, 64-bits Window 7 OS) with
C++ and all the results are generated using a single CPU core. The
various components of our overall collision detection system are
shown in Figure 7.

Our current implementation is limited to deformable models with-
out topology changes. We first construct a BVH for the entire scene
in a top-down manner [TCYM09]. During each time step, we up-
date the bounding volumes and NCs, and perform high-level culling
based on these data structures. After these high-level culling opera-
tions, we perform low-level culling operations that reduce the num-
ber of primitive tests using non-penetration filters (NPFs). Finally,
we perform triangle–triangle intersection tests for DCD and exact
elementary tests for CCD [TTWM14].

We use AABBs as the underlying bounding volume in the hierar-
chy. It is possible to use tighter bounding volumes such as k-DOPs,
but that increases the overhead of hierarchy update. Instead, we
use NPFs [TMT10a] along with AABBs and they provide similar

Updating BVs and CNs

Low Level CullingTraversal of BVH
&& BV Culling

Front Based Normal 
Cone Culling

High-level Culling

Exact Elementary Tests 
(BSC)

Updating Vertices

Figure 7: Collision detection system. For every time step, we up-
date the bounding volumes and normal cones and perform high-
level culling that includes bounding volume culling and front-based
normal cone culling. We perform low-level culling to eliminate du-
plicate elementary tests (for CCD) and reliable primitive tests for
each step.

Figure 8: Benchmarks. We use seven challenging benchmarks aris-
ing from deformable and cloth simulations. We compare the perfor-
mance of our DCD and CCD algorithms with prior methods.

culling efficiency as compared to k-DOPs or tight fitting bounding
volumes.

5.2. Benchmarks

In order to evaluate the performance of our DCD and CCD algo-
rithms, we used seven different benchmarks that came from different
deformable simulation scenarios and have been used by other re-
searchers.

� Twisting: It corresponds to complex cloth simulation with twists,
as the ball rotates. It has 64K triangles. This benchmark has a
high number of self-collisions (Figure 8a).

� Funnel: A cloth with 64K triangles falls into a funnel and folds
to fit into the funnel with many self-collisions (Figure 8b).

� Bishop: A swing dancer wearing three pieces of cloth (with
124K triangles) with self-collisions (Figure 8c).
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CT Time (DCD) CT Time (CCD)Bench- 
marks Our SCT Our CBC 

Twisting 0.41 1.58 1.09 5.39 

Funnel 0.63 2.29 1.17 7.56 

Falling 1.4 8.07 17.8 55.6 

Bishop 1.12 6.23 5.85 21.53 

Flamenco 1.87 7.53 4.22 20.49 

SquishyBall 141.1 196.5 454.3 668.5 

FlowingCloth 0.033 0.14 0.8 9.37 

Figure 9: Performance of contour tests. We highlight the average
running time (in ms) of our unprojected contour test algorithm by
comparing with SCT [SPO10] and CBC [TCYM09]. The contour
test can take a significant fraction of the overall collision query time
as shown in Figure 10.

Qry Time (CCD) 
Qry Time (DCD) 

Prior Methods Our Method
Bench- 
marks 

Our AABB 

Only 

SCT AABB 

Only 

CBC DC NC+ 

Front

NC 

Only

Twisting 56.79 80.08 60.15 105.55 95.56 96.45 82.6 92.19

Funnel 53.37 78.52 58.76 82.27 79.46 75.94 61.5 64.96

Falling 177.3 278.3 206.2 783.1 643.1 702.4 590.5 639.3

Bishop 75.24 109.23 90.93 124.98 111.9 119.32 97.76 109.5

Flamenco 83.1 102.29 95.4 272.18 267.4 252.31 210.6 215.5

SquishyBall  1842 2484 1921 6553 5749 5697 5142 5609

FlowingCloth 21.27 46.64 23.43 55.22 40.1 34.3 25.03 27.01

Figure 10: Performance and comparison. We compare the perfor-
mance of our algorithm with prior techniques for DCD and CCD
queries. We report the average time taken by these collision queries
(in ms) for each benchmark. Each of these methods performs the
same low-level culling operations and different high-level culling
operations. For our method, we also highlight the relative benefit
of combining BVTT front with normal cone culling (NC). We ob-
serve considerable speedups with (NC + Front) over prior CCD
algorithms.

� Falling: A man wearing a robe (with 172K triangles) falls down
rapidly, which introduces wrinkles and self-collisions in the cloth
(Figure 8d).

� Flamenco: A fiery Flamenco dancer wearing a colourful skirt
with ruffles. This benchmark (49K triangles) has a high number
of self-collisions (Figure 8e).

� SquishyBall: A squishy ball with 820 tentacles and over 1M
triangles squishes and bounces on the ground, inducing numerous
small inter-penetrations [ZJ12]. (Figure 8f).

� FlowingCloth: A flowing cloth with 50K triangles [ZJ12]
(Figure 8g) is hanging with two corners fixed.

Four of these benchmarks (Twisting, Bishop, Falling and Funnel)
are generated using a cloth simulation system. The input for the
Flamenco is given as discrete keyframes. We use the linearly inter-
polating motion of the vertices between successive keyframes and

Bench
-marks

Twisting Funnel Falling Bishop Flamenco Squishy-
Ball

Flowing- 
Cloth

DCD 34.48% 28.71% 25.5% 37.39% 26.23% 12.21% 8.01% 

CCD 37.10% 31.40% 27.4% 39.50% 29.30% 11.40% 9.20% 

Figure 11: Reduction in front size. We highlight the reduction in
the memory overhead of the BVTT front due to our novel traversal
algorithm based on normal cones (see Section 4). Due to normal
cone culling, the size of the BVTT front reduces by 8–37% in our
benchmarks.

check for inter-object and self-collisions. Figure 10 highlights the
performance of our algorithm for DCD and CCD queries on these
benchmarks.

5.3. Cloth simulation

We integrated our collision detection algorithm into a cloth simula-
tion system. The underlying simulator performs implicit integration
and use repulsion forces along with CCD computations to avoid in-
terpenetrations. We compared the overall performance of the cloth
simulation by using our collision detection algorithm versus prior
method that is based on AABB-only and performs no self-collision
culling. We used the simulator to generate the entire simulations
corresponding to these four benchmarks: Funnel, Twisting, Falling
and Bishop. Our faster CCD algorithm results in 1.2× speedup in
the overall performance of the cloth simulator.

6. Comparison and Analysis

6.1. Comparison

We compare the performance of our algorithm with the prior tech-
niques that use hierarchical methods or NCs for DCD and CCD.

1. SCT: This corresponds to the implementation of star-contours-
based NC algorithm of [SPO10] for DCD. This is based on line-
search star-shaped contour test and pre-computing the SCTT.

2. AABB-only: These algorithms use AABB as the underly-
ing bounding volumes and perform no self-collision culling.
They use low-level culling algorithms to eliminate duplicate
elementary tests and perform reliable elementary tests using
BSC [TTWM14].

3. CBC: This is the continuous NC algorithm for CCD [TCYM09]
along with AABB culling and BSC elementary tests and per-
forms the O(n2) exact contour test.

4. DC: This corresponds to the dynamic clustering algo-
rithm [HOEM15] for CCD. It computes new clusters at each
frame as the objects deform that is guaranteed to be collision
free using observation point [WLH*13]. It is combined with the
AABB hierarchy and BSC elementary tests.

5. NPF: The main contribution of the algorithm in [TMT10a]
is the use of an NPF, which is a light-weight filter (or culling
scheme) that can remove most of the false positives before per-
forming exact elementary tests. The use of that filter resulted
in 1.7×–3.5× speedups. In this paper, we also used the NPF to
reduce the number of false positives (as mentioned at the end of
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Figure 12: AABB versus kDOP. We compare the running times (in
seconds) of the Funnel benchmark (64K triangles) by using 24-
DOPs, 18-DOPs and AABBs as bounding volumes, respectively. As
shown by the figure, the time spent in the intersection computations
is reduced with the use of tighter bounding volumes, but the updating
time increases considerably.

Section 5.1). In other words, the self-collision culling algorithm
presented in this paper is complementary to the use of NPF.

6. VolCCD and BSC: The main contribution of Vol-
CCD [TMY*11] is in terms of low-level collision culling be-
tween volumetric elements; it is orthogonal to the use of NCs.
The main contribution of BSC [TTWM14] is related to per-
forming reliable and exact elementary tests for CCD compu-
tations. The improved NC algorithm presented in this paper is
orthogonal to these methods and can be combined with them.
Some of the algebraic formulations used in our NC test is sim-
ilar to that used in these prior papers, but the overall goal is
different.

We also compare the running times of the Funnel benchmark (64K
triangles) by using 24-DOPs, 18-DOPs and AABBs as bounding
volumes, respectively. As shown in Figure 12, the time spent in
the intersection tests is reduced with tighter bounding volumes, the
time to update the hierarchy (updating time) increases considerably
more. Overall, the algorithms based on AABBs provide the best
overall performance on the collision queries.

6.2. Analysis

As compared to the contour test presented in [SPO10], our algorithm
is simpler and has lower overhead because we do not perform any
projection computations. We observe up to 5.8× improvement in
the performance of the contour test for DCD (Figure 9) and up to
1.2× improvement (Figure 10) in the performance of overall DCD
algorithm, as compared to [SPO10].

We observe considerable performance improvement for CCD
computations, over techniques that either use no self-collisions
(AABB-only) or exact continuous NC tests [TCYM09]. This is due
to the fact that our NC test has linear complexity, whereas prior meth-
ods had quadratic complexity with a higher constant [TCYM09]. As
a result, we observe up to 11.7× improvement in the performance

0
1
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5
6
7
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9

with Low
level culling

without low
level culling

Figure 13: CCD accelerations with/without low-level culling. We
compare the acceleration rates for CCD between our method versus
AABB-only with/without performing low-level culling. We observe
much higher speedups without low-level culling.

of the contour test for CCD (Figure 9). In terms of the overall CCD
algorithm, the improved NC test results in up to 2.2× improvement
over AABB-only. We obtain higher speedups for CCD as compared
to DCD, because the NC tests take a larger fraction of the average
frame time.

The combination of front-based culling with our improved NC
test leads to considerable speedups. We observe additional perfor-
mance improvement by combining front-based culling with NC
(Front + NC) over using only NC in Figure 10. The front-based
traversal reduces the cost of hierarchy traversal and the number of
SCTs. It does not reduce the number of false positives in terms
of elementary tests. As a result, the relative benefits of NC tests
and front-based culling are somewhat complementary and we ob-
tain high speedups by combining them. Figure 1 highlights the
improved culling with unprojected NC tests. Furthermore, we ob-
serve considerable improvements in the size and memory over-
head of the BVTT front, when it is combined with NC culling (see
Figure 11).

In all the implementations (SCT, AABB-only, CBC and DC),
we used low-level culling methods (orphan sets [TCYM09] and
NPFs [TMT10a]) for CCD to remove redundant elementary tests.
So, the overall performance improvement in CCD query is moderate.
If we do not perform low-level culling and only compare the relative
performance with BVH culling only, we observe significantly higher
speedups, as shown in Figure 13. Many other approaches only seem
to compare the relative speedups with only BVH-culling [SPO10,
ZJ12]. Basically, these low-level culling methods can significantly
reduce the number of exact elementary tests being performed be-
tween the primitives. The fastest CCD algorithms use a combi-
nation of low-level and high-level culling schemes, as shown in
Figure 10 .

7. Limitations, Conclusions and Future Work

We present a fast and reliable algorithm to perform self-collision
culling on complex deformable models. There is a general
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perception that the overhead of NC tests is high and its applica-
tions has mostly been limited to DCD. We presented a novel un-
projected contour test that provides 10 − 30× improvement over
prior continuous contour tests for CCD. Furthermore, we described
a novel traversal scheme using front-based NC culling that reduces
the time and space overhead. The combination of these two meth-
ods can accelerate the performance of CCD queries by an order of
magnitude.

Our approach has some limitations. The unprojected contour
test tends to be more conservative than prior methods. The cur-
rent formulation is limited to linearly interpolating triangles for
CCD. Self-collision culling based on NCs works well when the re-
sulting meshes do not have high variations in curvature. As a result,
their performance depends on how a large mesh is decomposed into
sub-meshes at different nodes of the BVH or the underlying clus-
tering criteria. Our current implementation is limited to deformable
models that do not undergo topology changes.

There are many avenues for future work. It would be useful to
combine our approach with fast, dynamic clustering schemes that
can improve the culling efficiency of NCs and also used for adap-
tive meshes. We would like to parallelize the approach on multi-core
CPUs and GPUs, similar to [GLM05, SGG*06, TMLT11, ZK14,
TWT*16], and our reduced-size BVTT front should improve the
parallel performance. Finally, we would like to integrate our algo-
rithm with FEM and hair simulation systems.
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[SPO10] SCHVARTZMAN S. C., PÉREZ A. G., OTADUY M. A.: Star-
contours for efficient hierarchical self-collision detection. ACM
Transactions on Graphics 29, 4 (July 2010), 80:1–80:8.

[TCYM09] TANG M., CURTIS S., YOON S.-E., MANOCHA D.: ICCD:
Interactive continuous collision detection between deformable
models using connectivity-based culling. IEEE Transactions on
Visualization and Computer Graphics 15 (2009), 544–557.

[TMLT11] TANG M., MANOCHA D., LIN J., TONG R.: Collision-
streams: Fast GPU-based collision detection for deformable mod-
els. In Proceedings of the 2011 ACM SIGGRAPH Symposium on
Interactive 3D Graphics and Games (2011), pp. 63–70.

[TMT10a] TANG M., MANOCHA D., TONG R.: Fast continuous col-
lision detection using deforming non-penetration filters. In Pro-
ceedings of ACM Symposium on Interactive 3D Graphics and
Games (New York, NY, USA, 2010), ACM, pp. 7–13.

c© 2017 The Authors
Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.



498 T. Wang et al. / Efficient and Reliable Self-Collision Culling

[TMT10b] TANG M., MANOCHA D., TONG R.: MCCD: Multi-core
collision detection between deformable models using front-
based decomposition. Graphical Models 72, 2 (2010), 7–
23.

[TMY*11] TANG M., MANOCHA D., YOON S.-E., DU P., HEO J.-P.,
TONG R.: VolCCD: Fast continuous collision culling between
deforming volume meshes. ACM Transactions on Graphics 30
(May 2011), 111:1–111:15.

[TTWM14] TANG M., TONG R., WANG Z., MANOCHA D.: Fast and
exact continuous collision detection with Bernstein sign classi-
fication. ACM Transactions on Graphics 33 (November 2014),
186:1–186:8.

[TWT*16] TANG M., WANG H., TANG L., TONG R., MANOCHA D.:
CAMA: Contact-aware matrix assembly with unified collision
handling for GPU-based cloth simulation. Computer Graphics
Forum (Proceedings of Eurographics 2016) 35, 2 (2016), 511–
521.

[VT94] VOLINO P., THALMANN N. M.: Efficient self-collision detec-
tion on smoothly discretized surface animations using geomet-
rical shape regularity. Computer Graphics Forum 13, 3 (1994),
155–166.

[Wan14] WANG H.: Defending continuous collision detection against
errors. ACM Transactions on Graphics 33, 4 (July 2014), 122:1–
122:10.

[WB06] WONG W. S.-K., BACIU G.: A randomized marking scheme
for continuous collision detection in simulation of deformable
surfaces. In Proceedings of ACM VRCIA (2006), 181–188.

[WB14] WONG S.-K., BACIU G.: Continuous collision detection for
deformable objects using permissible clusters. The Visual Com-
puter 31, 4 (2015), 377–389.

[WC14] WONG S.-K., CHENG Y.-C.: Continuous self-collision de-
tection for deformable surfaces interacting with solid models.
Computer Graphics Forum 33, 6 (2014), 143–153.

[WLH*13] WONG S.-K., LIN W.-C., HUNG C.-H., HUANG Y.-J., LII

S.-Y.: Radial view based culling for continuous self-collision
detection of skeletal models. ACM Transactions on Graphics
(ACM SIGGRAPH) 32, 4 (2013), 114:1–114:10.

[WTTM15] WANG Z., TANG M., TONG R., MANOCHA D.: TightCCD:
Efficient and robust continuous collision detection using tight
error bounds. Computer Graphics Forum 34, (2015), 289–298.

[ZJ12] ZHENG C., JAMES D. L.: Energy-based self-collision culling
for arbitrary mesh deformations. ACM Transactions on Graphics
(Proceedings of SIGGRAPH 2012) 31, 4 (August 2012), 98:1–
98:12.

[ZK14] ZHANG X., KIM Y.: Scalable collision detection using p-
partition fronts on many-core processors. IEEE Transactions on
Visualization and Computer Graphics 20, 3 (March 2014), 447–
456.

c© 2017 The Authors
Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.


