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Abstract We present an efficient and robust method
which performs well for both strain limiting and
treatment of simultaneous collisions. Our method
formulates strain constraints and collision constraints
as a serial of linear matrix inequalities (LMIs)
and linear polynomial inequalities (LPIs), and solves
an optimization problem with standard convex
semidefinite programming solvers. When performing
strain limiting, our method acts on strain tensors
to constrain the singular values of the deformation
gradient matrix in a specified interval. Our method
can be applied to both triangular surface meshes
and tetrahedral volume meshes. Compared with prior
strain limiting methods, our method converges much
faster and guarantees triangle flipping does not occur
when applied to a triangular mesh. When performing
treatment of simultaneous collisions, our method
eliminates all detected collisions during each iteration,
leading to higher efficiency and faster convergence than
prior collision treatment methods.

Keywords strain limiting; collision response;
linear matrix inequality (LMI);
semidefinite programming

1 Introduction

1.1 Strain limiting

In the real world, many materials, such as cloth
and animal tissues, can only deform to a limited
degree. Although compliant to small deformations,
they are highly resistant to deformations larger
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than some threshold. For cloth, its structure of
fibers and threads easily accommodates small-to-
moderate amounts of stretching, but once the
structural slack has been taken up, resistance
to further stretching increases dramatically [1].
When developing characteristic dynamics models
to simulate such materials, many researchers have
taken account of this biphasic property as a key
to developing wrinkle patterns observed in many
fabrics. Similarly, animal tissues, such as skin or
relaxed muscles, are also compliant to small strains
but very tough and resistant to larger ones.

Unfortunately, most simulation methods perform
poorly for materials with highly non-compliant
constitutive regimes. Standard finite-element
methods, including mass-spring systems, model
strong resistance using large material coefficients,
leading to integration problems over time [1].
Explicit integration methods require very small time
steps to stay stable and avoid divergence. Implicit
methods can maintain stability using relatively large
time steps, but may converge slowly, and suffer from
high residuals or excessive damping. To prohibit
excessive extensibility in simulation, most dynamic
models use projection to enforce a hard limit on
large strains, i.e., strain limiting.

Many strain limiting methods have been
proposed. Anisotropic strain limiting methods [2]
in cloth simulation limit strains of edges. Isotropic
methods [1, 3] act on the strain tensors and limit the
singular values of the deformation gradient matrices
of triangles. Our method also performs isotropic
strain limiting for both triangular surface meshes
and tetrahedral volume meshes. Compared to prior
methods, our method has faster convergence and
produces better strain limited triangular meshes
without any flipped triangles.
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1.2 Treatment of collisons

Collision handling is another vital research area in
computer animation. Deformable bodies naturally
bring about large numbers of collisions varying in
strength from resting contact to high speed impact.
Collisions between soft and thin sheets, such as
cloth and paper, are especially difficult to handle.
There are two phases in collision handling, collision
detection and collision response. Collision detection
is an important component of physically based
simulation systems targeting cloth and hair, and
finite-element simulation. Even a single undetected
collision can lead to simulation failure. Continuous
collision detection (CCD) algorithms are widely
used in cloth simulation to detect collisions between
cloths, cloths and rigid bodies, and self-collisions
of the same cloth. Robust collision response is
also vital for cloth and shell simulation. Not only
must collisions be prevented, but the response must
be physically plausible. Unsuitable treatment of
collisions may lead to divergence in collision handling
and simulation failure. While the handling of
individual collisions is well understood, simultaneous
collisions can halt existing methods. When facing a
cluster of interacting simultaneous collisions, a rigid
impact zone (RIZ) approach as proposed by Bridson
et al. [4] may be adopted to prevent collisions,
but this also eliminates all relative tangential
velocity in a physically implausible way. Another
approach based on inelastic projection impact zone
(IIZ), proposed by Harmon et al. [5], formulates
collisions as linear constraints and then solves
a nearest projection optimization problem. Our
method is similar to IIZ, but we impose an additional
determinant inequality constraint on each collision
which ensures we can eliminate every detected
collision in only one iteration.

1.3 Semidefinite programming

The notation A � 0 implies that A is a symmetric,
positive semidefinite (PSD) matrix. Such an
expression is a linear matrix inequality (LMI) [6].
In the same manner, A � B implies that A − B

is PSD and thus for a scalar c ∈ R, the equation
S � cI implies that the eigenvalues of S are greater
than or equal to c.

A semidefinite program (SDP) is a convex
optimization problem formulated with LMI

constraints and a linear objective. Semidefinite
programming unifies several standard problems. It
is easy to formulate any linear program, convex
quadratic program, and second-order cone program
as an SDP. SDP solvers are still not as mature
as more classical optimization methods, and have
higher time complexity. However, they are already
efficient enough for many applications in computer
graphics. Semidefinite programs are as easy to solve
as linear programs. Most interior-point methods
have been generalized to semidefinite programs.

1.4 Main results

In this paper, we present an efficient and robust
method to perform both strain limiting and
treatment of simultaneous collisions.
• We perform strain limiting of triangular meshes in

the fashion of strain limiting of tetrahedral meshes.
The benefit is that it can prevent triangle flipping.
• We impose an additional determinant constraint

on collision response, which can ensure the
detected collisions to be eliminated by only one
iteration.
• We formulate strain constraints and collision

constraints as a serial of LMIs and LPIs, then
solve a projection optimization problem with
semidefinite programming.

1.5 Organization

The rest of the paper is organized as follows.
We survey prior work on strain limiting and
collision handling in Section 2. We present a
position based projection optimization problem with
strain and collision constraints in Section 3. We
present our semidefinite programming solution to our
optimization problem in Section 4; implementation
is considered in Section 5. We highlight the results
and performance of our method in Section 6.

2 Related work

Provot [7] introduced strain limiting as a technique
for stably modeling stiff springs by imposing
constraints on the maximum and minimum allowed
strain of each link. Subsequently, many extensions
of this technique have been developed. Bridson et
al. [4] applied momentum-conserving impulses to the
velocities to ensure that all springs are deformed by a
maximum of 10% from their rest lengths at the end
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of each time step. Goldenthal et al. [8] proposed
an efficient constrained Lagrangian method for
modeling inextensible spring networks. For triangle
meshes, English and Bridson [9] used nonconforming
elements to allow more degrees of freedom of a
strain limited triangle to model inextensible cloth.
Thomaszewski et al. [10] presented a continuum-
based technique that independently constrains the
three components of the strain tensor of a triangle. A
technique for isotropic strain limiting was proposed
by Wang et al. [1], who also introduced a multi-
resolution approach for enforcing these constraints.
Narain et al. [3] posed strain limiting as a nonlinear
optimization problem and used an augmented
Lagrangian method to solve it.

Collision handling plays a significant role in
physically based simulation. Continuous collision
detection (CCD) methods are widely used to detect
collisions and intersections in cloth, hair, and thin
sheet simulations. Brochu et al. [11] proposed
a volume-based geometric predictor, and Tang et
al. [12] proposed a Bernstein sign classification
(BSC) based predictor, both of which can provide
exact collision results by taking advantage of exact
geometric arithmetic. Wang [13] introduced error
analysis into a traditional cubic solver for CCD to
achieve conservative but acceptable collision results.
Detected collisions also need to be handled properly.
Bridson et al. [4] applied repulsion impulses to
collision elements to remove collisions. To handle
clusters of interacting simultaneous collisions that
repulsion impulses are not able to deal with,
Provot [14] and Bridson et al. [4] used a rigid impact
zone (RIZ) approach to prevent collisions. Huh et
al. [15] divided the impact zone into clusters to
partially alleviate the rigidification. Tsiknis [16]
considered shearing modes of the impact zone.
Harmon et al. [5] proposed a new inelastic projection
impact zone (IIZ) method to better deal with
simultaneous collisions. Tang et al. [17] presented
a method to compute continuous penalty forces
to determine collision responses between rigid and
deformable models bounded by triangle meshes.

3 Position based projection

Many approaches to the simulation of dynamic
systems in computer graphics are force based

methods. In physically based simulation, strain
limiting and collision response are used as remedies
when excessive deformations or collisions appear
after numerical time integration. Force based
methods [4, 5, 18] act on velocities and then
use the updated velocities to find final positions
meeting with various kinds of constraints, such as
strain constraints, collision constraints, and position
constraints (e.g., fixed points). It usually needs
many iterations to determine final good-quality
positions, and requires relatively small time steps
to keep the simulation system stable. In contrast,
Müller et al. [19] proposed position based dynamics
(PBD), which acts directly on positions to get a
well constrained simulation configuration. Many
constraints, such as strain and collision constraints,
are very easy to handle by projecting points to valid
locations in PBD. It is also very stable and allows
simulations to take relatively large time steps.

Strain limiting and collision response can both be
viewed as finding the closest projections to meshes
which are correctly strain limited and collision-free.
Given a mesh with m vertices, we can get its
candidate positions [q1, . . . , qm]T = q ∈ R3m after
numerical time integration. Let q′ ∈ R3m be the well
constrained positions of the mesh. The objective of
the position based projection optimization problem
is defined as following:

min
q′

||M 1
2 (q′ − q)||2F (1)

where M is the mass matrix and ||.||F denotes
the Frobenius norm. Strain constraints and
collision constraints are imposed respectively
when performing strain limiting and collision
response. We adopt semidefinite programming to
solve the optimization problem stably and efficiently,
as presented in Section 4.

3.1 Strain constraints

A well strain-limited surface mesh is one in which the
strains of all faces lie within the user-specified strain
limits [smin, smax]. We use [u1, . . . ,um]T = u ∈ R2m

to denote the material coordinates of a surface mesh
in material space, with ui ∈ R2. The deformation
gradient of a triangle face is F = DqD−1

u , where
Dq = [qj − qi, qk − qi] is a 3 × 2 matrix and
Du = [uj − ui,uk − ui] is a 2 × 2 matrix [1].
We diagonalize F into F = USV T using singular
value decomposition (SVD); U and V are orthogonal
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matrices and S is a 3 × 2 matrix with nonnegative
values on the diagonal, which are the two principle
strains (s1, s2) of the triangle face. So the strain
constraints for the triangle face are

smin 6 s(qi, qj , qk) = (s1, s2) 6 smax (2)
i.e., smin 6 s1, s2 6 smax.

Strain limiting for a volume mesh is performed
in a similar way. The deformation gradient of
a tetrahedron [qi, qj , qk, ql] is also written as F .
Unlike the surface mesh case, now Dq = [qj−qi, qk−
qi, ql − qi] and Du = [uj − ui,uk − ui,ul − ui]
are 3 × 3 matrices because ui ∈ R3 for a volume
mesh. Finding the SVD of F gives three nonzero
singular values (s1, s2, s3), so the strain constraint
for a tetrahedron is

smin 6 s(qi, qj , qk, ql) = (s1, s2, s3) 6 smax (3)
To unify strain limiting for surface meshes

and volume meshes, we extend the 2D material
coordinates of surface meshes to 3D by simply setting
the third value to zero, i.e., ui = [u1, u2, 0]T. In
addition, we introduce an auxiliary vertex pl for each
triangle [qi, qj , qk] of the surface mesh, as shown
in Fig. 1(a). Its material coordinate is upl

= ui +
[0, 0, 1]T, and its initial position in world space is
pl = qi + n where n is the unit normal vector of the
triangle. This transforms a triangular surface into a
tetrahedral volume mesh, as shown in Fig. 1(b). This
allows Eq. (2) to be updated to

smin 6 s(qi, qj , qk,pl) = (s1, s2, s3) 6 smax (4)
Moreover, we add a matrix determinant inequality
constraint as below to make sure that strain limited
triangles do not flip; a comparison with the previous
method without this constraint is shown in Fig. 2.
d(qi, qj , qk,pl)=det([qj−qi, qk−qi,pl−qi])>0 (5)

This indicates that the matrix is orientation
preserving and the volume of the tetrahedron
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Fig. 1 Transforming a triangular mesh into a tetrahedral mesh. (a)
An auxiliary vertex p is added so that the vector q0p is the unit
normal vector of the triangle in both world space and material space.
(b) After adding an auxiliary vertex for each triangle, a triangular
mesh is transformed into a tetrahedral mesh. Only some of the
auxiliary vertices are shown in (b).

Fig. 2 Strain limiting for a triangular surface mesh. The top mesh is
stretched lengthwise by a factor of 1/2 from the original undeformed
mesh. The strain of the stretched mesh is limited to lie within
[0.99, 1.01]. The bottom-left mesh is produced by Narain et al.’s
strain limiting method [3]; some triangles have flipped as highlighted
in red. The bottom-right mesh is produced by our method; the strain
is well limited, without flipping triangle.

constructed by a triangle and its auxiliary vertex is
always positive. The strain constraints for multiple
triangles are formulated as follows:

smin 6 s(q,p) 6 smax (6a)
d(q,p) > 0 (6b)

If there are w triangles, then [p1, ...,pw]T = p ∈ R3w,
s ∈ R3w and d ∈ Rw.
3.2 Collision constraints

When performing treatment of collisions, two
elementary kinds of primitive, vertex-face (VF)
pairs and edge-edge (EE) pairs, need to be
tackled properly. Each pair consists of four vertices,
[qi, qj , qk, ql]. For a VF pair, qi is a vertex and
[qj , qk, ql] represents a triangle face. For an EE pair,
[qi, qj ] and [qk, ql] represent the two edges. Two
distance constraint functions for a VF and an EE
pair are defined as respectively in Ref. [5], as follows:
cVF(qi, qj , qk, ql)=n·[α0qi−(α1qj +α2qk +α3ql)]
cEE(qi, qj , qk, ql)=n·[(α0qi+α1qj)−(α2qk +α3ql)]

(7)
where n is a normal vector and α0, α1, α2, α3 ∈ [0, 1]
are parameters. For a VF pair, n is the normal of
the triangle face, α0 = 1, α1 + α2 + α3 = 1. For
an EE pair, n is the cross product of the two edges,
α0 + α1 = 1, α2 + α3 = 1.
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A pair is collision-free provided that c > 0. At an
intermediate time in a time step, a pair is colliding
if c 6 0, as shown in Fig. 3; the projection of vector
qcqi onto the normal vector n is negative. So the
collision constraint for a pair is

c(qi, qj , qk, ql) > 0 (8)
Because the normal n dependends on the positions
of the four vertices, the collision constraints are non-
linear. Harmon et al. [5] just sets n to be the normal
at the time of collision, so the constraint function
c becomes linear. This corresponds to removing
collisions by just modifying the positions along the
normal vector, which essentially conforms to the
laws of physics. Although the linear constraint in
Eq. (8) is met, it cannot guarantee the elimination of
collisions at the end of a time step because the vertex
may still be on the negative side of the triangle face
for a VF pair, like in the case shown in Fig. 3(b).

To simplify c(q), we also make the same choice as
Harmon et al. [5]. In the meantime, we impose a
similar constraint to Eq. (5) on collision:
d(qi, qj , qk, ql)=det([qj−qi, qk−qi, ql−qi])>0 (9)

which indicates the volume of the tetrahedron
consisting of the four vertices of a collision pair is
positive, i.e., a vertex is always on the positive side of
its opposite triangle in the tetrahedron. Combining
Inequality (9) with Inequality (8) simplifies the
processing of collisions and ensures that collisions are
eliminated. Figure 3(c) shows a result that imposes
constraints with both Inequalities (8) and (9),
ensuring that the vertex is on the positive side of the

Fig. 3 Collision response for a VF pair. A VF collision pair consists
of vertex qi and triangle ∆qjqkql. n is the normal vector at collision
time and qc = α1qj + α2qk + α3ql is the collision point, where
α1, α2, α3 are barycentric coordinates. N is the normal vector of the
triangle after the collision response.

triangle face. Multiple collisions can be constrained
simultaneously.

c(q) > 0 (10a)
d(q) > 0 (10b)

If there are k collisions, then c ∈ Rk, d ∈ Rk.

3.3 Positional constraints

Positional constraints, such as fixed-points and
gluing constraints, are very common in cloth
simulation.
3.3.1 Fixed points
A fixed-point constraint for vertex i can be
formulated as

f(qi) = ||qi − xi||1 = 0 (11)
in which xi is a fixed point in world space. The
fixed-point constraint function can be reformulated
to enforce multiple fixed-point constraints using:

f(q) = ||P q − x||1 (12)
[x1, ...,xm]T = x ∈ R3m is a column vector and P is
an m×m diagonal block matrix, where each block is
a 3×3 matrix. If vertex i is constrained, the ith entry
xi is a user-defined vector in world space and the ith
entry on the diagonal of P is an identity matrix, i.e.,
Pii = I. The other entries of x and P are zero.
3.3.2 Glue
A gluing constraint for two vertices i and j can be
formulated as

dmin 6 g(qi, qj) = nT · (qi − qj) 6 dmax (13)
where n ∈ R3 is a unit normal and [dmin, dmax]
is a distance interval. The glue constraint function
can also be reformulated to enforce multiple glue
constraints using:

g(q) = Nq (14)
If there are k glue constraints, G ∈ Rk and N ∈
Rk×3m, which is a sparse matrix. Each row of N

is in the format [n1, ...,nm]T = NT
row ∈ R3m. If

vertices i and j are glued together, then nj = −ni

and the other entries are zero.

4 Solution by semidefinite
programming

Strain constraints (i.e., Inequalities (4) and (5)) and
collision constraints (i.e., Inequality (9)) are non-
linear and non-convex, which makes the projection
optimization problem complicated and difficult to
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solve. Narain et al. [3] adapted an augmented
Lagrangian method to solve the problem with strain
constraints. However, it converges slowly and is not
robust in practice, as shown in Figs. 2 and 4. Instead,
to solve our problem, we adopt the method proposed
by Kovalsky et al. [20], which can control the singular
values of a square matrix to lie within a positive
interval [γ, Γ ] by use of semidefinite programming
(SDP).

A meta-problem is defined as follows to control the
singular values of an arbitrary square matrix.

min
A∈Rn×n

f(A, smin(A), smax(A)) (15a)

such that smax(A) 6 Γ (15b)
smin(A) > γ, det(A) > 0 (15c)

where A is an n×n matrix, smin(A) and smax(A)
are the minimum and maximum singular values
respectively, and f(A, smin(A), smax(A)) is a convex
objective function. Obviously, the feasible set of
the meta-problem is non-linear and non-convex. It
is difficult to solve it using traditional optimization
methods. Recently, Kovalsky et al. [20] proposed
a simple and efficient method to solve the meta-
problem, which reformulates the non-linear and non-
convex constraints in Inequalties (15b) and (15c) as
two linear matrix inequalities respectively.

Inequality (15b) can be replaced equivalently by

the following LMI:(
ΓI A

AT ΓI

)
� 0 (16)

Furthermore, a family of maximal convex subsets
is found to cover the entire set defined by
Inequality (15c). Each maximal convex subset is
defined by an LMI of the form:

A + AT

2 � γI (17)

To find a global solution, the procedure rotates
the current maximal convex subset to the next
iteratively.

Positional constraints such as fixed-point and
glue constraints are easy to handle because they
are linear. We just detail how to deal with strain
constraints and collision constraints. The problem
of strain limiting for a single triangle or tetrahedron,
or collision for a single pair, is very similar to the
meta-problem. Strain and collision constraints can be
reformulated as LMIs and LPIs, allowing us to take
advantage of standard convex SDP solvers to solve
strain limiting and collision problems in physically
based simulation.

4.1 Strain limiting

Strain limiting for a single triangle can be defined via
the following projection optimization problem with
LMI constraints:

(a)

(b) Our method (c) Narain et al.’s method

(10 iterations) (33 iterations) (987 iterations)

Our method Narain et al.’s method

(1 iteration)

Average time per
iteration (s)

Total time (s)

Fig. 4 Comparison of strain limiting methods. The triangular mesh at top right (a) has 9600 triangles; it is stretched twice in length and
compressed by half in height compared to the original un-deformed mesh. Mesh (b) was generated by our method. As the picture shows,
our method generates the best result. The meshes in (c) were generated by Narain et al.’s strain limiting method [3] using 10, 33, and 987
iterations respectively. The table at top right shows the number of iterations taken by these two methods to converge. It is clear that our
method converges faster (in one iteration) than Narain et al.’s method [3]. The disadvantage of our method is that each iteration takes longer
to perform.
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min
q′

||M 1
2 (q′ − q)||2F (18a)

such that
(
ΓI F

F T ΓI

)
� 0 (18b)

F + F T

2 � γI (18c)

where F is the deformation gradient matrix of the
triangle defined in Section 3.1. After transforming
the triangle into a tetrahedron, F is a square matrix.
Because F is just a linear transformation of q, we
can easily apply the method to our strain limiting
problem. Having shown how strain limiting for a
single triangle or tetrahedron is done, it is easy to
extend Eq. (18) to the case for multiple triangles and
tetrahedra.

4.2 Collision response

For a single pair involved in a collision, the problem
can be defined as a projection optimization problem
with both LMI and LPI constraints:

min
q′

||M 1
2 (q′ − q)||2F (19a)

such that c(q′) > 0 (19b)
q′∆ + (q′∆)T

2 � γI (19c)

where q = [qi, qj , qk, ql] represents the collision pair,
and q∆=[qj−qi, qk−qi, ql−qi] is a 3×3 matrix which
is a linear transformation of q. Inequality (19b) is
linear so that we can also apply this method to
the collision problem. Furthermore, scenarios with
complex simultaneous collisions are also very easy to
handle.

5 Implementation

5.1 Local strain limiting

There are two manners in which we can perform
strain limiting for a deformable mesh, global and
local. In global strain limiting, the candidate
positions of all vertices in a mesh are constrained
simultaneously. Global strain limiting is very simple,
but relatively slow.

In local strain limiting, we detect triangles which
violate strain limits. Correlated triangles which share
vertices are put into an SL zone which represents
the regions where strain limiting is needed, just like
an impact zone which is widely used in collision
response methods to deal with complex scenes with

simultaneous collisions. We take each SL zone as
a unit when dealing with regions which violate
strain constraints. For each SL zone, a projection
optimization problem is solved to project the region
to the nearest location which satisfies the strain
constraints. Local strain limiting needs to detect
triangles violating strain limits and handle them
iteratively until no triangles are detected. Each
detected triangle is a smallest SL zone. Correlated
SL zones are merged with each other. The extreme
case is that the entire mesh is covered by a sinlge SL
zone, which is equivalent to global strain limiting.

Handling an SL zone may make correctly strain
limited triangles become no longer strain limited,
necessitating another iteration. The worst case is
that no longer strain limited triangles may appear
one by one, causing slow local strain limiting
convergence, and taking much time. To accelerate
convergence, we extend each SL zone by merging it
with its one ring of neighbouring triangles, as shown
in Fig. 5. This approach makes SL zones enlarge
more quickly, contributing to faster convergence of
local strain limiting.

When applying global strain limiting in physically
based simulations, the internal energies stored in
meshes propagate faster and better than in local
strain limiting. The disadvantage is that it takes
relatively more time to solve a big optimization
problem, especially when meshes are generally
already correctly strain limited. In contrast, local
strain limiting is very fast when meshes are correctly
strain limited. As SL zones expand, it takes more
and more iterations to ensure the meshes retain good
qualities. Additionally, detecting no longer strain
limited triangles in each iteration is expensive. Thus,
global strain limiting is more suitable for simulations
using large time steps where large deformations

Fig. 5 Local strain limiting. The red region is an SL zone. Before
performing strain limiting for this SL zone, we extend it by merging
with its one ring neighbour triangles, i.e., the light blue region in the
left. Then we perform strain limiting for the extended bigger SL zone.
This helps local strain limiting converge faster.
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appear frequently, while local strain limiting is more
suitable to simulations using small time steps.
5.2 SDP optimization

In our method, we have to solve the optimization
problem defined in Eq. (20), in which the objective
is a quadratic function:

min
q′

||M 1
2 (q′ − q)||2F

subject to LMI and LPI constraints
(20)

To solve the problem with an SDP solver, we
reformulate the problem as the following equivalent
optimization problem with linear objective:

min t (21a)

subject to ||M 1
2 z||F 6 t (21b)

q′ − q = z (21c)
LMI and LPI constraints (21d)

in which z and t are auxiliary variables.
Inequality (21b) is a convex conic quadratic
constraint and Inequality (21c) is a linear constraint.
The new optimization problem is easy to solve with
a standard convex SDP solver.

6 Results

We reformulate strain constraints and collision
constraints as a series of linear matrix inequalities
and linear polynomial inequalities in the projection
optimization problem. The transformed problem is
easy to solve using standard convex semidefinite
programming solvers; we use the one in Mosek [21].

Compared to Narain’s strain limiting method [3],
our method converges faster and can prevent
triangle flipping when performing strain limiting for
triangular meshes. Figure 6 shows that our method
performs well in strain limiting for tetrahedral
meshes. However, Narain et al.’s method [3] takes

Fig. 6 Strain limiting for a tetrahedral volume mesh. Bottom left:
original un-deformed mesh. Top: the mesh is stretched to twice its
original length and compressed to half its original height. Bottom
right: the mesh produced by our method has well limited strain and
is closest to the deformed mesh.

less time in each strain limiting iteration than
our method. Compared with Harmon et al.’s
collision response method [5], our method takes fewer
iterations and less time to converge, making the
collision handling process faster.

6.1 Performance

We evaluated the performance of our method with
various cloth simulation benchmarks, as shown in
Figs. 7, 8, and 9, using a standard PC (3.4 GHz
Intel i7-4770 CPU, 8 GB RAM, 64-bit Windows 7,
NVIDIA GeForce GTX 780 GPU). This includes
a C++ implementation of strain limiting and
collision response based on Mosek’s semidefinite
programming solver. Figure 9 illustrates results of
our method when performing strain limiting on
cloth simulations, as well as a comparison with a
prior strain limiting method. Table 1 highlights the
performance of our method when computing collision
responses on different benchmarks, as shown in

Fig. 7 A moving ball hits a hanging cloth. The cloth mesh has 8.2k triangles; the strains of each triangle are limited to lie in [0.95, 1.05].
This benchmark uses our method to perform strain limiting and collision response.
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(a) Hanging cloth (b) Twisting cloth (c) Funnel cloth (d) Human cloth

Fig. 8 Collision response benchmarks: (a) a ball hits three layers of cloth; (b) three layers of cloth fall on a rotating ball and are twisted by
it; (c) a falling ball pushes three layers of cloth through a funnel. All of (a), (b), and (c) produce many simultaneous complex collisions which
may lead to cloth simulation failure. (d) is a clothed dancing human, in which less complex collisions occur.

(a) Our method: 5 iterations

(b) Narain’s method: 10 iterations

High resolution: 8.2k triangles
1% 5% 10%

Low resolution: 2k triangles

1% 5% 10%

(c) Narain’s method: 35 iterations

High resolution: 8.2k triangles
1% 5% 10%

Low resolution: 2k triangles
1% 5% 10%

High resolution: 8.2k triangles
1% 5% 10%

Low resolution: 2k triangles
1% 5% 10%

Fig. 9 Strain limiting benchmarks. We use two cloth meshes with different resolutions (2k and 8.2k triangles respectively) to demonstrate
the difference between our strain limiting method and Narain et al.’s method during cloth simulation. We limit the deformation of these meshes
using different strain limits, [0.9, 1.1] allowing 10% deformation at most compared with the rest mesh, [0.95, 1.05] allowing 5% deformation at
most, and [0.99, 1.01] allowing 1% deformation at most, respectively. The cloth exhibits more detailed wrinkles when using a higher resolution
mesh. Comparing our method with Narain et al.’s method using the same meshes and the same strain limits, it is clear that meshes generated
by our method are better strain limited. In contrast, meshes generated by Narain et al.’s method are more loose only after 10 iterations. After
35 iterationes, Narain et al.’s meshes in the third row become tighter and closer to our meshes in the first row.

Table 1 Comparison of collision response methods. Note the advantages of our collision response method over Harmon et al.’s inelastic
projection impact zone approach [5]. Using the same collision detection method, our method takes fewer iterations in each time step to
handle simultaneous collisions. Furthermore, our method takes less time in each iteration to deal with multiple simultaneous collisions. Both
contribute to a faster collision handling process (including collision detection and collision response)

Benchmarks

Hanging cloth 4.93 5.53 0.47 0.62 5 6.45

Twisting cloth 6.65 11.63 0.65 0.97 4.23 8.65

Funnel cloth 9.89 12.39 1.61 9.96 20.82 36.42

Human cloth 0.98 1.01 0.0526 0.0014 0.65 0.57

Average # of iterations in

collision response

Average time of iteration

in collision response (s)

Average time of collision

handling (s)

Our collision response method Inelastic projection impact zone
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Fig. 8.
In detail we compare the performance of

our method with the following methods and
implementation:
• Narain et al.’s strain limiting method [3]. Like

our method, it also constrains the singular values
of the deformation gradient of triangles and
solves a projection optimization problem. It takes
advantage of an augmented Lagrangian method to
transform the constrained optimization problem
to an unconstrained problem, and adopts the
non-linear conjugate gradient method from the
ALGLIB numerical analysis library1 to obtain its
solutions. Narain et al.’s strain limiting method [3]
is implmented in ARCSim2, an open-source
simulator. Our method instead performs strain
limiting for triangles based on tetrahedra, to
prevent triangle flipping. Additionally, our method
transforms non-linear strain constraints into linear
matrix inequality constraints. We take advantage
of Mosek’s semidefinite programming solver to
solve the optimization problem.
• Harmon et al.’s collision response method [5] using

inelastic projection. Inelastic projection is actually
a velocity filter because it acts on velocities
of meshes. It solves a projection optimization
problem with linear equation constraints. In our
method, we replace the linear equations by
linear inequalities and add additional determinant
inequality constraints. This ensures that detected
collisions are eliminated after only one iteration,
as shown in Fig. 3.

6.2 Analysis

Strain limiting and treatment of collisions are two
important processes in physically based simulation,
particularly cloth and hair simulations. We have
presented an efficient and robust method which can
deal with both of them well. There are several
advantages of our method. When performing strain
limiting, we transform a triangle into a tetrahedron;
our method applies to both triangular surface meshes
and tetrahedral volume meshes. Additionally, our
method can ensure the volume of a tetrahedron
to be positive preventing triangle flipping during
strain limiting. Compared with prior strain limiting
methods, our method converges faster, although our
1 Sergey Bochkanov and Vladimir Bystritsky, http://www.alglib.net/
2 http://graphics.berkeley.edu/resources/ARCSim/arcsim-0.2.1.tar.gz

method takes more time in each iteration when
performing global strain limiting. Strain limiting
for many triangles produces many low-dimensional
LMI constraints, many more than the number of
variables. Thus, standard SDP solvers may be
non-optimal and need more time to find a optimal
solution. When handling simultaneous collisions,
our method eliminates all detected collisions during
every iteration, which contributes to higher efficiency
and faster convergence than prior collision handling
methods.

7 Limitations, conclusions, and future
work

We have presented an efficient and robust
method which performs well both for strain
limiting and handling simultaneous collisions. In
our method, strain constraints and collision
constraints are reformulated as a seriesl of linear
polynomial inequalities (LPIs) and linear matrix
inequalities (LMIs). Our method solves a projection
optimization problem with Mosek’s standard
semidefinite programming solver. We have tested
our method on some cloth simulation benchmarks
and highlighted its benefits compared to prior strain
limiting methods and collision response methods.

Our method has a few limitations. When
performing strain limiting for a high-resolution mesh
in global fashion, our method takes more time
than Narain et al.’s method [3]. When combining
strain constraints with collisions constraints, our
method may be unstable when many collisions occur
simultaneously. In the future, it is very possible and
indeed essential to optimize our method to make it
faster when performing strain limiting for a high-
resolution mesh. A more efficient SDP solver may
also help to solve the global strain limiting problem
faster.
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