DOI: 10.1111/cgf.13356

EUROGRAPHICS 2018 / D. Gutierrez and A. Sheffer
(Guest Editors)

Volume 37 (2018), Number 2

Efficient BVH-based Collision Detection Scheme with Ordering and
Restructuring

Xinlei Wang ! Min Tang '3 Dinesh Manocha 2 and Ruofeng Tong !

1Zhejiang University, China
2University of North Carolina at Chapel Hill, America
3 Alibaba-Zhejiang University Joint Institute of Frontier Technologies

Abstract

Bounding volume hierarchy (BVH) has been widely adopted as the acceleration structure in broad-phase collision detection.
Previous state-of-the-art BVH-based collision detection approaches exploited the spatio-temporal coherence of simulations by
maintaining a bounding volume test tree (BVTT) front. A major drawback of these algorithms is that large deformations in the
scenes decrease culling efficiency and slow down collision queries. Moreover, for front-based methods, the inefficient caching on
GPU caused by the arbitrary layout of BVH and BVTT front nodes becomes a critical performance issue. We present a fast and
robust BVH-based collision detection scheme on GPU that addresses the above problems by ordering and restructuring BVHs
and BVTT fronts. Our techniques are based on the use of histogram sort and an auxiliary structure BVTT front log, through
which we analyze the dynamic status of BVTT front and BVH quality. Our approach efficiently handles inter- and intra-object
collisions and performs especially well in simulations where there is considerable spatio-temporal coherence. The benchmark
results demonstrate that our approach is significantly faster than the previous BVH-based method, and also outperforms other

state-of-the-art spatial subdivision schemes in terms of speed.

CCS Concepts

eComputing methodologies — Collision detection; Physical simulation;

1. Introduction

Collision detection (CD) has usually been a major performance
bottleneck in physically-based computer simulations. The simu-
lator needs to check for not only potential primitive overlaps be-
tween pairs of objects but also numerous self-collisions within each
model. This challenge is also encountered in other fields like hap-
tics, robotics, and manufacturing.

Generally, a CD pipeline consists of several levels of filtering
processes, typically a broad-phase step followed by a narrow-phase
step. The broad-phase step coarsely excludes large parts of primi-
tives that cannot collide according to their bounding volumes (BVs)
and generates a potential collision set [Well3] to be checked for
exact intersection in the narrow-phase step. In this paper, we only
focus on the broad-phase CD.

There are two main approaches used in broad-phase CD: spa-
tial subdivision and object partition. Spatial subdivision algorithms
subdivide the space into cells. Many auxiliary data structures have
been researched, including binary space partitioning (BSP) trees
(including k-d trees), grids, hierarchical spatial hashing tables, etc
[Wel13]. Bounding volume hierarchy (BVH) is the primary choice
in terms of object partition approaches. It is essentially a tree-like

(© 2018 The Author(s)
Computer Graphics Forum (©) 2018 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

structure where each node is associated with a subset of primitives
of objects enclosed by a specific type of bounding volume.

Many parallel algorithms have been proposed, which exploit
the benefits of GPU architectures for better performance. Sev-
eral spatial subdivision methods have been developed to accelerate
CD. [WLZ14] proposed an adaptive octree grid method OTG, in
which a two-stage scheme is used to improve octree subdivision,
removing a considerable number of broad-phase tests, and thus ad-
equately addresses the two main issues in previous spatial subdi-
vision methods: uneven triangle sizes and uneven triangle spatial
distributions. [WDZ17] designed a novel CD algorithm kDet with
a linear complexity based on a geometric predicate that revealed not
only the topology of the mesh but also its volumetric configuration.
They used hierarchical spatial hashing for GPU implementation. To
the best of our knowledge, both of the above methods reported the
fastest performance results on their respective GPUs.

Among BVH-based techniques, the primary issue is the main-
tenance of BVHs. In the context of CD, the construction speed is
generally preferred over tree quality, therefore linear bounding vol-
ume hierarchy (LBVH) [LGS*09] is a more suitable option than
other high-quality BVHs like surface area heuristic (SAH) BVHs
[GS87,MB90]. With the rise of general-purpose GPU-computing,



228 XinLei Wang & Min Tang & Dinesh Manocha & RuoFeng Tong / Efficient BVH-based Collision Detection Scheme with Ordering and Restructuring

it has become possible for data structures like BVHs, octrees,
and k-d trees to be built upon millions of primitives in real-time
[Kar12]. Nevertheless, parallel construction of BVHs is still at least
one order of magnitude slower than just reftting especially in com-
plex scenes. In fact, refitting is the optimal operation for BVH
maintenance as long as the BVH retains its culling efficiency.

However, refitting is not enough for most dynamic scenes con-
sisting of deformable objects. Therefore, many selective restruc-
turing approaches, which trade tree quality for maintenance speed,
have been researched and developed. [LAMO6] selected degener-
ated subtrees based on the ratio of a parent’s bounding box vol-
ume to the sum of its children’s, re-splitting them later in the CD
query phase. [OCSGO7] used AVL trees for the implementation of
BVHs and realized restructuring operations through tree edge rota-
tions and grandchildren permutations. [YCMO07] used a cost/benefit
evaluation of the culling efficiency of ray intersection tests to re-
structure pairs of nodes, while [Gar08] searched for nodes whose
children undergo large motion. These two approaches use multiple
phases to identify candidates for restructuring before reconstruc-
tion. [HSK*10] developed a restructuring method in their CD al-
gorithm for large-scale fracturing models based on a culling effi-
ciency metric that measured the expected number of overlap tests
of a BVH. Unfortunately, none of the above restructuring algo-
rithms has been proven portable or efficient on GPU. [KIS*12]
added a single rotation iteration, performing local restructuring to
each frame’s refit phase with only a small increase in processing
overhead, and thus improved the quality of the trees. They imple-
mented the algorithm on GPUs in a bottom-up fashion, with the
drawback being that the parallelism only exists within nodes at the
same level. Recent methods [KA13,DP15] restructured treelets re-
cursively as an optimization of BVH quality for better ray tracing
performance, but the overhead is still relatively high for CD.

Another practical issue is the memory layout of BVH nodes.
[YMO6] assessed the runtime access patterns of BVHs based on lo-
calities using a probabilistic model and computed an optimized lay-
out that reduced cache misses. It showed that cache locality can be
substantially improved by reordering nodes in the BVH according
to a certain access pattern. [NPK*10] later introduced an ordered
depth-first layout that suits ray tracing systems well. We demon-
strate that a depth-first layout (see Figure 2.3) can be calculated
quickly and is efficient in collision detection.

There is usually a certain degree of spatio-temporal coherence
between successive frames in physically-based simulated environ-
ments. The traversal path of non-overlapping nodes of a bound-
ing volume test tree (BVTT), i.e. BVTT front [TTSDO6], is also
present. Keeping track of the BVTT fronts enables the collision de-
tection to skip highly unnecessary bounding volume overlap tests.
[LCI8] first came up with an incremental scheme that takes advan-
tage of spatial coherence to accelerate CD, which is also known as
generalized front tracking [ELO1]. It was later used in a GPU-based
streaming algorithm by [TWT*16, TMLT11, DZPW15], which to
our knowledge demonstrates the best CD performance among
BVH-based methods so far.

There are other optimization techniques for specific types of
deformation, specialized models like hair [Sob05], or necklaces
[GNRZO02], or with specific presentations like reduced models

4

\ ;
@& bés(@\a
D © @ 0 00 0 @

Traversal Path of Primitive-1

Figure 1: Traversal path of stackless self-collision detection of
primitive-1 without BVTT front, assuming that the primitive-1 over-
laps with all other primitives in this BVH.

[JPO4]. Those peculiar restrictions limit the usefulness to a much
smaller subset of applications, and may not work well in terms
of dealing with more general models and deformations. Much ef-
fort has also been put into reducing redundant self-collision tests
[SPO10,WLT*17]. These algorithms worked well for flat materials
like cloth and can be integrated into our scheme as well.

Motivated by the above issues and techniques, we investigate
the optimization of memory layouts of BVHs and BVTT fronts,
and present a novel, BVH-based broad-phase collision detection
scheme on GPU. We make the following contributions:

e An efficient computation method for ordering
Instead of performing an expensive comparison sort on BVH and
BVTT front, we build our ordering scheme on top of histogram
sort and make adjustments to compute a cache-friendly layout
for these nodes in parallel. As a result, our CD traversal gains
significant speedup. Additionally, this technique is integrated
with our maintenance operations (including restructuring) and
results in considerable speedup. This procedure is at least two
orders of magnitude faster than other common GPU sorting
algorithms (including radix sort) and the overhead is very small.

An adaptive front-based collision detection scheme

Conventional front-based collision detection algorithms lack
sensitivity to BVH quality degenerations. We develop a frame-
work that can periodically detect such variations through BVIT
front log, which contains the updated statistics of the BVTT
front, and can also perform efficient restructuring. Our quality
detection method is more correlated with front-based CD per-
formance than inspecting the status of BVHs due to our novel
quality metric, and therefore achieves efficiency and robustness.

2. Related Work

In this section, we give an overview of previous work most related
to our approach, including fast construction of LBVHs, stack-less
BVH traversal and generalized BVTT front tracking.

(© 2018 The Author(s)
Computer Graphics Forum (©) 2018 The Eurographics Association and John Wiley & Sons Ltd.



XinLei Wang & Min Tang & Dinesh Manocha & RuoFeng Tong / Efficient BVH-based Collision Detection Scheme with Ordering and Restructuring 229

Linear BVH Construction: BVHs are now widely used in various
computer graphics applications because of their low memory foot-
print and flexibility in being adapted to model deformation. Un-
like ray tracing, collision detection tends to trade tree quality for
faster construction. [LGS*09] first came up with a parallel algo-
rithm for rapidly constructing linear BVH on many-core GPUs by
first sorting the primitives along a space-filling curve using Morton
codes. [Karl2] further improved this technique by eliminating the
serialization caused by constructing BVH level by level, and this
method scales well with number of GPU cores. [Apel4] contin-
ued optimization by implementing LBVH construction in a single
kernel that performs construction and refitting. In this paper, we
adopt [Apel4] for fast construction of LBVHs and design our re-
structuring algorithm in a similar manner.

Stack-less Hierarchy Traversal: Traditionally, a stack (depth-first
order) or a queue (breadth-first order) is needed for CD depending
on a certain traversal rule. In GPU-based implementations, the stor-
age of these structures is usually declared as arrays inside kernels
that reside in local memory, and eventually end up in the DRAMs,
resulting in a bandwidth-limited application.

Another problem in self-collision detection is that there exists
one corresponding duplicate for each collision pair that is the re-
sult of switching its two components if no order between the two
components of a pair is specified. To eliminate redundant pairwise
BV tests, the BV of every primitive should be checked against BVs
only enclosing primitives with greater (or smaller) indices.

The stack-less hierarchy traversal technique handles the above
problems well. The first stack-less hierarchy traversal algorithm
was proposed by [NTOS5] in the context of ray tracing, and used a
forward pointer called escape index (see Figure 2.2). [Dam07] later
extended it to handle collision detection between two BVHs. In
their experiments, several predictable algorithms with correspond-
ing stack-less versions were evaluated in scenarios with different
setups in terms of performance, scalability and robustness. Though
the dynamic stack algorithm performs best in most cases due to
the heuristic descending strategy (BV with larger volume traversed
first), its traversal rule is unpredictable so the stack cannot be omit-
ted. Furthermore, the lack of parallelism makes it hard to be ported
to GPU. In our observation, the leaf algorithm lends itself best to
the GPU parallel architecture, and we use this method to generate
the BVTT front and gather collision pairs.

They also introduced the concept of left child levels value (LCL
value) indicating how many straight left children there are above
the node (see Figure 2.3), which is essential to our implementation
of BVH ordering as discussed in Section 3. The resulting mem-
ory layout of our BVH is similar to its pre-indexed tree (depth-first
order) except that the storage of external nodes (i.e. leaves) is sep-
arated from internal nodes.

BVTT Front-based Traversal: There is extensive research on ex-
ploiting spatio-temporal coherence for faster collision detection.
We refer the reader to the literature [TTSD06, TMT10]. The main-
tenance of BVTT fronts is composed of two operations: sprouting
(BVTT front node replaced by its descendants) and pruning (a set
of BVTT front nodes replaced by their common ancestor covering
no extra BVTT nodes). See Algorithm 1 for more details.

(© 2018 The Author(s)
Computer Graphics Forum (©) 2018 The Eurographics Association and John Wiley & Sons Ltd.

eeHuc
ee»—-e.—-
l-‘b-'b-lel-l
eo—-euu

4( | sentinel |

@b¥\@@é\>

External  1(1) 2(1) 3(e) 4(1) 6(@) 6(1) 7(1) -1
Internal  2(1) 3(@) 6(@) 6(8) -1 7(1) =l -
2. Escape Index Table

0 4

@Q% @gék>

LCL Value 4
Prefix Sum 2] 4 4 4 5 5 7 7

3. Depth-first Order Layout Computation

Figure 2: BVH Computation

1. LBVH built upon the ordered primitives by [Apel4]. The index of
each internal node is that of the external node which splits its range
into two halves, i.e. the rightmost leaf index of its left children.

2. The escape indices of all BVH nodes used for stackless traversal.
The integer within the braces denotes whether it is the index of an
external node, 1 means true, 0 otherwise. All escape indices falling
out of the BVH are marked as -1.

3. Sort all internal nodes in a depth-first traversal order (specified
in the pink boxes). Note that prefix sum computation uses the exclu-
sive scan.



230 XinLei Wang & Min Tang & Dinesh Manocha & RuoFeng Tong / Efficient BVH-based Collision Detection Scheme with Ordering and Restructuring

Algorithm 1: Conventional BVTT front-based collision

detection

1 Function maintain (PrevFront, NextFront, CPs) :

2

e ® N un A

10
11

12

13
14
15
16
17

18
19
20
21
22
23

24
25

26
27
28
29
30

w

1
32
33
34
35
36

37
38
39
40
4

42
43

for front(i,j) € PrevFront do
// acquire BV of primitive i
// primitive i maps to BVH
external (leaf) node i
PrimBV <— BoundingVolume (i)
// acquire BV of BVH node j
BvhBV <— BoundingVolume (j)
if Overlap (PrimBV, BvhBV) then // sprout
sprout (i, j, NextFront, CPs)
else // prune
prune (i, j, NextFront)
end
end

return

Function sprout (Primindex, BvhNodelndex, Front,
CPs):

if IsLeaf (BvhNodelndex) then
CPs.PushPair (Primindex, BvhNodelndex)
end
PrimBV < BoundingVolume (Primindex)
Searchlndex «+— LeftChild (BvhNodelndex)
// stack-less depth-first CD
traversal
while Searchindex € SubBVH (BvhNodelndex) do
BvhBV - BoundingVolume (Searchindex)
while ! IsLeaf (Searchindex) and
Overlap (PrimBV, BvhBV) do
Searchindex <— LeftChild (Searchindex)
end
// front nodes are classified into
external and internal front
according to their second
indices
Front.PushNode (Primindex, Searchindex)
if IsLeaf (Searchindex) and
Overlap (PrimBV, BvhBV) then
CPs.PushPair (Primindex, Searchindex)
end
Searchlndex <~ EscapeIndex (Searchindex)
end

return

Function prune (Primlndex, BvhNodelndex, Front) :

PrimBV < BoundingVolume (Primindex)
Child «— BvhNodelndex
Father < Parent (Child)
while IsLeftChild (Father) and
Overlap (PrimBV, BoundingVolume (Father))
do
Child < Father
Father +— Parent (Child)
end
if IsLeftChild (Father) or
Overlap (PrimBV, BoundingVolume (Father))
then
Front.PushNode (Primindex, Child)
end

44 return

A BVH-based CD pipeline using the incremental scheme was
proposed by [TMLT11, TWT*16]. In their GPU-streams, the colli-
sion pipeline involves a one-time preprocessing stage and a run-
time stage for collision queries. The preprocessing stage is de-
composed into the construction of BVHs (one for clothes and
one for obstacles) and the initialization of BVTT fronts (one for
cloth/obstacle CD and one for cloth self CD), each containing one
BVTT node composed of two root nodes of corresponding BVHs.
During the run-time stage, BVHs are refitted and CD is performed
through a front-based traversal. Note that their application disabled
the pruning operator in most benchmarks for faster front-based CD
and periodically performed total reconstruction, in case of degen-
erate scenarios.

In this paper we extend the work of [TMLT11]. A stack-less depth-
first order traversal algorithm like the leaf algorithm [DamO7]
is used as a substitute for the original stack-based algorithm
[TMLT11] in both inter- and intra-object collision queries. Also,
instead of pushing just one BVTT node into the front and then ex-
panding it to the full extent in a single thread, our front is directly
generated from checking all primitive BVs against the whole BVH
in parallel. Our method also supports a pruning operator in our reg-
ular maintenance cycle so that the front retains CD efficiency.

3. Ordered BVH-based Collision Detection

In this section we examine the issues that limit the performance
of conventional BVH-based collision detection pipelines. We ob-
serve that low memory bandwidth efficiency and divergent parallel
executions are priority problems within existing parallel CD algo-
rithms, and accordingly propose a lightweight ordering scheme that
sorts all the nodes in BVHs and BVTT fronts in a cache friendly
layout for CD traversal.

3.1. A Simple Workaround

In a BVH-based CD pipeline, all input primitives of each object
are sorted according to their Morton codes, then an internal hierar-
chy is built upon these primitives [Apel4] before collision queries
are performed. The resulting node layout of each BVH is displayed
in Figure 2.1. Afterwards, all collisions associated with this BVH
(including self collision detections) are tested by checking for inter-
sections between primitive BVs and the BVH, recursively. A typi-
cal traversal path of a self collision BV test is marked in Figure 1.
It is obvious that a lot of cache misses happen during the depth-first
order BVH CD traversal, thus greatly reducing memory bandwidth
efficiency.

However, reorganizing the BVH nodes in a depth-first layout can
substantially increase the cache hit rate as no related BVH nodes
will be fetched from DRAMs into the cache more than once for
each individual primitive. For many-core architectures like GPUs,
consecutive threads checking intersections between spatially adja-
cent (due to primitive sortings) primitive BVs and the same BVH
tend to share a similar traversal path, letting DRAMs work close
to the peak global memory bandwidth. In fact, matching the BVH
layout to its access pattern is an optimization practice of the Coa-
lesced Global Memory Access technique, because global memory
is accessed in chunks of aligned 32, 64, or 128 bytes and cached

(© 2018 The Author(s)
Computer Graphics Forum (©) 2018 The Eurographics Association and John Wiley & Sons Ltd.



XinLei Wang & Min Tang & Dinesh Manocha & RuoFeng Tong / Efficient BVH-based Collision Detection Scheme with Ordering and Restructuring 231

in L1/L2. Furthermore, the structure of array (SoA) layout is en-
forced on BVH nodes to avoid bandwidth waste. This improvement
not only significantly speeds up BVH-based CD, but also lays the
foundation of our efficient front-based CD. Check all BVH related
queries in lines 3, 4, 16, 17, 18, 19, 20, 22, 25, 28, 32, 34, 35, 36,
38, 40, 41 in Algorithm 1.

Previous GPU implementations of BVTT front maintenance
generally used atomic add instruction to insert BVTT nodes into
front (see lines 24, 42 in Algorithm 1) during sprouting and prun-
ing. Consequently, all newly built nodes are stored randomly in a
compacted array. As line 2 in Algorithm 1 suggests, all these nodes
are actually independent and each corresponds to a fine-grained
task which is to be scheduled on GPU. More specifically, each
front node, i.e. front(i, j), indicates that its thread should traverse
the BVH from node j. Because the count of front nodes is numer-
ous, cache miss is also a serious issue for front-based CD.

Fortunately, layout optimization can be used to improve the per-
formance. Assume adjacent GPU threads start searching from the
same BVH node or consecutive BVH nodes and that BVH nodes
are also in depth-first layout, then the same segment of BVH nodes
residing within a small region of global memory will usually be
concurrently accessed, no matter what operator is executed (sprout-
ing or pruning).

To achieve the above cache friendly layout, a naive yet common
method is to sort all the front nodes according to their second com-
ponents in ascending order by comparison. However, computation
overhead of this method is rather high for a real-time application.
Instead, we propose an auxiliary structure order log, composed of a
count log and an offset log, to realize a histogram sort on both BVH
nodes and front nodes. The central idea of our ordering scheme is
as follows:

e 1. Produce the elements and count the number of elements inside
each segment at the same time. Counts are stored in count log.

e 2. Compute prefix sums of these counts in offset log. They work
as the starting positions of each segment.

e 3. Group all the elements into their corresponding segments by
looking up their keys.

Since the counting in Step 1 is lightweight and Step 3 is in-
evitable for any sorting algorithm, the performance gap between
this method and others exists in Step 2, specifically the prefix sum
computation, whose complexity is linear with the number of seg-
ments. Fortunately, its parallel implementation is fast enough that
its overhead is almost negligible.

3.2. Cache-Friendly BVH Layout Computation

We notice that during depth-first traversal, the left boundaries of
the traversed internal nodes, i.e. the indices of external nodes, are
strictly in non-descending order. Therefore, each external node is
treated as a segment and the index of each internal node’s left
boundary is used as a reference to its corresponding segment.
Moreover, the positions of internal nodes within each segment from
top to bottom should be in strict ascending order so that the order
matches the exact depth-first order.

Our BVH layout computation starts with counting LCL values of

(© 2018 The Author(s)
Computer Graphics Forum (©) 2018 The Eurographics Association and John Wiley & Sons Ltd.

external nodes (see Figure 2.3) in count log. Note that the LCL val-
ues in our scheme are off-by-one compared to those in [Dam07],
because external nodes and internal nodes of the BVH are stored
separately. This is primarily due to the LBVH construction algo-
rithm [Ape14] which handles these nodes in two dependent phases.
Thus, only internal nodes need ordering. Another motivation is re-
lated to BVTT front classification as detailed in Subsection 3.3.

After being computed within construction kernel, LCL values
are exclusively-scanned into the offset log. Before going into Step
3, the mapping between original indices and ordered indices of in-
ternal nodes (the numbers in the pink boxes shown in Figure 2.3)
are calculated by each individual segment (leaf node) from top to
bottom using offset log. Finally, all internal nodes are scattered
in the ordered array with their tree topology links (parent han-
dle, left/right child handle) updated. The resulting layout suits our
stackless depth-first collision queries very well.

3.3. Cache-Friendly and Less Divergent BVTT Front

Conventionally, the BVTT front stores all front nodes in a single
mega array, and all collision queries initiated from the front be-
gin with accessing random BVH nodes. This obviously results in a
huge number of cache misses. As described in Subsection 3.1, or-
dering front(i, j)s by their second components largely addresses this
issue and reduces the memory latency (see pipeline a in Figure 4).
However, this simple workaround does not take Thread Diver-
gence, more precisely branch divergence and loop divergence, into
account. Since the hardware serializes different execution paths
(due to branch divergence) inside each warp (a group of threads
running concurrently on a multiprocessor), and idles the whole
warp until the thread with the highest iteration count (due to loop
divergence) finishes, there can be an unexpected performance drag
as a result of the animation and collision status.

In our collision detection scheme, BVTT front is only enabled
when there exists enough temporal coherence between successive
frames; hence the front in the previous frame resembles the one
in the current frame. As for each individual front node, the work-
load in sprout or prune correlated with coherent motion is therefore
comparatively small. Even if a certain amount of BVH degenera-
tion happens and causes adaptive front update, the depth-first layout
optimization of front nodes can partially counteract this negative
impact, because all the front nodes that need considerable mainte-
nance share the same BVH node index j and are therefore aggre-
gated. On the whole, loop divergence is within our tolerance.

Branch divergence is a more critical issue. As shown in Algo-
rithm 1, branch divergence happens whenever consecutive threads
adopt different maintenance operations at lines 5, 7, both of which
are essential functions for a robust and adaptive framework. Yet, we
can alleviate this negative impact by simply categorizing the front
nodes front(i, j)s according the their second components. Those
front(i, j)s with j denoting an external (leaf) node of a BVH are
grouped in an external front, otherwise, they result in an internal
front. This design tactic is based on the fact that, for every front
node in the external front, its sprout function generates next to zero
overhead because, there are no child nodes left to traverse. Even
if the thread detects an intersection and enters the sprout branch,



232 XinLei Wang & Min Tang & Dinesh Manocha & RuoFeng Tong / Efficient BVH-based Collision Detection Scheme with Ordering and Restructuring

FrontNode
Opt Mark

Step1

Step2

Primitive-0 = <2~6)- @) -@)-@) -
Primitive-1 = .- ‘@ 2

Step 3

Node

Initial Internal Front

(0,

2)

ci:.

'

oﬂsetnonlza

Fmal Internal' Front (Ordered) .

mn-—n n--n

Initial External Front

| mternal |0 | 1 2 | 3 [ ecemal | 0 | 1 | 2 | 3 |

(1,6)

FrontNode
Opt Mark

(0, 6) (1,1) (0, 4)

0"'«.,'

(0,7)

(1,7)

(0,3)

] dnt \ Order Log f ,x’ternal Front‘
«@:-Q: [EER-A:B: A8
nonl cuuntnonou noon
H22H3 offset [ 0 n111znz
Opt Mark 1 i Opt Mark 1
Final Externa! Front (Ordered)

3

(0 2) (0, 6) (1,6) Node (0, 3) o, 4) 0,7) [ 7)

BVTT Inter-Front Maintenance Pipeline

Figure 3: In this example, we are checking BV overlaps between two primitives and this BVH. All the front nodes are displayed in the left
half with respect to its primitive. The right half exhibits our 3-step ordering scheme. In step 1, front nodes categorized into internal front
and external front are originally in arbitrary order and marked with a 1-bit tag Opt Mark indicating which branch in maintenance function
is executed. In step 2, we count the number of node in each segment and compute prefix sums. In step 3, each front node first refer to its
corresponding segment by its second component and the Opt Mark tag, then check the offset log to acquire its segment starting position,

finally inserted in this segment.

the performance loss due to serialization is negligible. Moreover,
the strategy of separating external BVH nodes from internal nodes
mentioned Subsection 3.2 helps increase the bandwidth efficiency
during respective collision queries within both external fronts and
internal fronts.

A more thorough practice of this strategy is illustrated in Fig-
ure 3. While preparing BVTT fronts for the next frame, we mark
each node front(i, j) according to its maintenance branch. Those
front nodes that execute prune branch are marked 0, otherwise they
are marked 1. We combine this 1-bit mark with the BVH node in-
dex j to get the segment key of node front(i, j) and use it for BVTT
front ordering. Due to spatio-temporal coherence, all front nodes
that execute a specific operation will likely enter the same branch
in the following frame, and these nodes are further arranged in a
depth-first order layout for better cache utilization. In practice, the
mark is not embedded in the segment key, but rather indicates the
direction in which to insert corresponding elements, i.e. 1 means to
insert from back to front and O the opposite. Therefore, the quantity
of segments in the external order log equals the number of external
(leaf) nodes (e.g. 7 in Figure 3) and is thus not doubled.

Finally, we observe that the speedup from updating fronts in each
frame does not make up for the overhead caused by memory oper-
ations at lines 24, 42 in Algorithm 1. Thus, the front update is only
active once every few frames in our scheme and we call this main-
tenance operation preserve fronts (see pipeline b in Figure 4).

4. Restructuring Scheme

The BVH-based collision detection pipeline equipped with our or-
dering scheme gains remarkable speedup over the previous state-
of-the-art approach [TMLT11]. However, the BVH quality degen-
eration is still an unsettled problem. A simple workaround is recon-
structing BVHs and BVTT fronts periodically to manage degener-

generate
fronts

update
fronts

update
fronts

e

N o AT° v 1
3 e
fronts fronts

a) +Cache Friendly

) |

generate
fronts

update
fronts

[

balance
fronts

c) +Adaptive Restructure

CD Pipeline Evolvement
b) + Less Divergent

Figure 4: During each frame, our CD framework executes one of
the numbered operations ranging from 1 to 5. Three kinds of colli-
sion detection pipelines are presented above.

Pipeline a. This pipeline focuses on GPU cache optimization. We
add a BVTT front ordering phase in circle 1 and circle 3. For fur-
ther speedup, we disable front maintenance in circle 2. Note that
whenever the BVH is rebuilt from scratch, this pipeline is reset to
circle 1.

Pipeline b. Circle 3 usually takes a lot more time than circle 2. In
addition to the overhead of front memory operations, the accumu-
lated deformations in circle 2 also bring down the CD efficiency.
Therefore circle 4 is injected into the cycle to alleviate thread di-
vergence in circle 3.

Pipeline c. The complete pipeline is integrated with our quality in-
spection and restructuring. The decision for circle 3 to go to 1 or
5 depends on the current degeneration scale measured through our
metric.

(© 2018 The Author(s)
Computer Graphics Forum (©) 2018 The Eurographics Association and John Wiley & Sons Ltd.



XinLei Wang & Min Tang & Dinesh Manocha & RuoFeng Tong / Efficient BVH-based Collision Detection Scheme with Ordering and Restructuring 233

ations. But rebuilding from scratch is slow enough that it may lead
to performance stuttering. Even worse, setting the period to be too
narrow results in unnecessary overhead, while setting it to be too
wide frequently neglects notable degenerations. Therefore we pro-
pose a novel collision quality metric for frequent quality inspection
and use the less costly restructuring operation for BVH structure
optimization.

4.1. Quality Inspection

A robust BVH-based CD pipeline should be able to detect degen-
erations in a timely manner and pick out corresponding BVH sub-
trees before performing further operations. The previous method
[LAMO6] measured the culling efficiency of a node by evaluating
the overlapping ratio of both children. Each calculation involves
all attributes of three bounding boxes (3 * 6 = 18 float variables
in total for AABB bounding volume type). The significant flaw in
this metric is that the collision status related to the BVH node is
omitted. For example, if an internal node covers a subset of primi-
tives that rarely collide with other primitives, then the degeneration
of this node is tolerable because only a few collision query tasks
are slowed down by it. As a matter of fact, there is usually not
enough CD performance speedup from restructuring to make up
for its overhead in our experiments on this metric.

A better metric should also consider the magnitude of collisions
associated with each BVH node. In our front-based CD, whenever
anode degenerates, its related BVTT front nodes most likely sprout
during an update front (see Figure 4). More precisely, this front(i,
J) will expand into several front(i, k)s whose k indicates a node in
the subtree of node j. However, the swelling of front nodes could
also be the result of an increasing number of collisions with the
subset of primitives that node j covers during regular animations.
Based on these patterns, we design a metric function that takes the
quantity of BVTT front nodes and collision pairs whose second
components belong to the same subtree as independent variables.
For simplicity, the latter parameter is approximated to the number
of external front nodes, so that both items can be measured through
the already computed order log for front ordering, referred to as
BVTT front log. Since the overall CD performance is fundamen-
tally determined by the former item, our metric should also grow
linearly with it. The optimal metric value needs to remain stable as
its collision status changes. Our resulting metric Formula 1 is as
follows:

Y2 intent;  int t 1 — int t
(i) = j=a j _intoffsety, | —intoffsety )

Zf{:S extenty extof fset; | —extof fsets

i is the index of an internal BVH node. Q(i) is our improved quality
metric of node i. a, b are the smallest internal node index and the
largest in subtree i (subtree rooted at node i), respectively. s, t are
the smallest external node index and the largest in subtree i, respec-
tively. intcnt(j) is the j-th value of internal front count log, while
extent(k) is the k-th value of external front count log. intoffset(i)
and extoffset(i) stand for the i-th value of internal front offset log
and external front offset log, respectively. Because of our BVH or-
dering, indices of all the nodes in the same subtree are consecutive;
therefore the sum of front node counts within a subtree is simply
the subtraction of two prefix sums in offset log (see Figure 3).

(© 2018 The Author(s)
Computer Graphics Forum (©) 2018 The Eurographics Association and John Wiley & Sons Ltd.

We integrate it with several CD pipelines and test our metric on
two benchmarks where fronts are activated. The curve (see Fig-
ure 5) strongly proves the validity of our metric in the way that
the overall collision time has a positive correlation with this quality
curve. The lower the curve is, the faster its update front is exe-
cuted, which matches the description of our metric function, i.e.
the approximate average number of front nodes it takes to compute
an AABB collision pair (mostly between 3 and 4). Another proof is
that the reference quality curve of every benchmark remains steady
no matter what its collision status is, while the static curve rises
under the influence of BVH quality degenerations.

Since each calculation involves only four integers from the offset
log already computed in the front ordering phase, the overhead of
quality inspection is almost negligible. In practice, it occupies less
than 5 percent of overall CD time in all benchmarks. The detection
is performed whenever the BVH structure changes, more specifi-
cally right after generate fronts or update fronts (see Figure 4).

However, there are several regions of interest in Figure 5. Range
1 shows that the optimal BVH structure upon a set of primitives
may not be the one built by [Apel4], as the reference curve is
higher than the static curve in this range. This is primarily be-
cause the construction algorithm does not build the theoretically
best quality tree for CD. Range 2 reveals the general pattern of the
correlation between the overall CD performance and the quality
curve of a simulation.

4.2. BVH Restructuring

The subtree candidates for restructuring are selected during quality
inspection in update front. In the beginning of the next frame, the
quantity of BVH nodes and related front nodes is then evaluated for
further instructions (see Formula 2).

refit NUMpesty < threshold, gy
OPtBVH =< rebuild
restructure  NUMyesy >= thresholdy,iy
@3]
The implementation of BVH restructuring is generally the same as
in [Apel4], except that we only rebuild the subtree candidate in a
bottom-up fashion until its root is met.

4.3. BVTT Front Restructuring

After a BVH is restructured, a portion of its related BVTT front
nodes, the second components of which map to restructured BVH
nodes, becomes invalid. The rest are valid ones that can still be di-
rectly used in front-based CD. As shown in Figure 5, reconstruct-
ing both BVHs and BVTT fronts is about one order of magnitude
slower than preserve fronts (see Figure 4). Therefore, a BVTT front
restructuring is expected, as in BVH maintenance.

The central idea of restructure fronts (see pipeline ¢ in Figure 4)
is that all valid front nodes are marked, compacted, and later han-
dled by Algorithm 1 as usual, while the invalid front nodes are
recalculated. This procedure is similar to the previous ordering
scheme, except that the invalid front nodes are filtered out and sup-
plemented in an additional phase, during which each invalid front

thresholdy, fiy <= numyesy < thresholdp,iiq



234 XinLei Wang & Min Tang & Dinesh Manocha & RuoFeng Tong / Efficient BVH-based Collision Detection Scheme with Ordering and Restructuring

10 Overall Funnel Quality 1 Funnel Quality [320-420]

mctatic =ssperiodic ===reference
" 4
5
— — I\

=mmstgtic esssperiodic ===reference

Funnel Performance [320 420]

' | Generate fronts |

onts I

Range 1

Overall Funnel Performance

sm—ctatic e===periodic ===reference

=—stgtic ===periodic =—=reference

Figure 5: Three quality curves (a static curve, a periodic curve and a reference curve) and corresponding CD performance curves (total
CD time per frame on GTX1080) of benchmark funnel. The static curve represents pipeline b in Figure 4, and the periodic curve is the
variation that replaces "update fronts" operation with "generate fronts" every second cycle. The reference curve rebuilds BVHs and BVIT
fronts (i.e. "generate fronts") every frame in order to retrieve the ideal quality under the assumption that the construction algorithm [Apel4]
builds the optimal tree structure for CD. The periodic curve shows that "preserve fronts" and "balance fronts" are approximately one order

of magnitude faster than "g
fronts".

enerate fronts", and the cost of "update fronts" which executes Algorithm 1 is about twice as much as "preserve
The two circles marked in red and green display the statistics of "update fronts". The differences in the static curve with the periodic

curve suggests that whichever has a higher quality metric takes more time on the CD query.

node front(i, j) is examined for further instruction. Normally, If
node j covers the leftmost primitive of its subtree, the thread will
traverse from front(i, root(j)), otherwise it is discarded. A particu-
lar case in self-collision front is that, if node i is also among the
root(j), then node j certainly cannot cover the left boundary (its in-
dex is smaller than i) of the restructured subtree. Instead, if node j
covers primitive i+/, then the thread will traverse from front(i, i+1)
within this subtree. In the end, the resulting front in arbitrary layout
is sorted as in Subsection 3.3.

5. Comparisons and Analysis
5.1. Effectiveness of Histogram Sort

As described in Subsection 3.3, the BVTT front is sorted based on
the value of the second component of each front node, and we use
histogram sort as our sorting algorithm. To verify its efficiency, we
compare it with the implementation of radix sort in Thrust, which is
considered to be one of the fastest sorting algorithms for short keys
on a GPU. To perform radix sort, the integer keys are extracted
and then sorted using the sort_by_key function from Thrust library
in CUDA toolkit 8.0. Figure 6 displays the overheads of two sort
algorithms in three benchmarks. The table shows that radix sort is
approximately one order of magnitude slower than histogram sort.

The improvement from ordering is as expected. Figure 7 com-
pares the execution statistics of the most frequently used kernel
preserve-fronts (see Figure 4), the performance of which is gov-
erned by our ordering scheme. It implies that both global memory
access and warp execution efficiency benefit from the ordering.

- BVTT Front Length Variation (Internal + External) | Histogram Sort (ms) | Radix Sort (ms)

Flamenco (644429 + 486981) ~ (1442704 + 753844) 0.40~0.70 8.20~12.2
Funnel (205651 + 149119) ~ (697200 + 214470) 0.14~0.27 1.53~2.50
Cloth Ball (982110+ 755381)~ (4371698 + 1675945) 0.55~1.70 9.50~13.25

Figure 6: Histogram Sort vs. Radix Sort.
Experiment conducted on GTX1080. The time spent on sorting de-
pends linearly on the size of BVIT front, therefore it fluctuates as
the front length varies during animations.

_ Cache Hit Rate (Ll Reads)| Global Load L2 Transactions/Access

Unordered 3157 99.9%
Ordered 92% 234 65.7%

Figure 7: Impact of Ordering on ClothBall Benchmark.
Tested on GTX780. All statistics are gathered through NVidia Vi-
sual Profiler 8.0.

5.2. Analysis of Our Scheme

We implement two versions of our CD pipeline. The first version is
embedded in the ARCSim simulator in [TWT*16]. All primitives
are categorized into a deformable BVH and a rigid BVH. Collision
queries are composed of an intra-CD inside the deformable BVH
and an inter-CD between the deformable BVH and the rigid BVH.
We experiment the following four scenarios.

e Flag: A single piece of hanging cloth (80K triangles, de-

formable) flutters in constant wind and with gravity.

(© 2018 The Author(s)
Computer Graphics Forum (©) 2018 The Eurographics Association and John Wiley & Sons Ltd.



XinLei Wang & Min Tang & Dinesh Manocha & RuoFeng Tong / Efficient BVH-based Collision Detection Scheme with Ordering and Restructuring 235

e Sphere: A piece of hanging cloth (66K triangles, deformable) is
hit by a forward/backward moving sphere (1K triangles, rigid).

e Victor: A character (104K triangles, rigid) holds still in a red
dress (54K triangles, deformable).

e DressBlue: A character (27K triangles, rigid) dances in a blue
dress (34K triangles, deformable).

The other version is a standalone broad-phase collision detection
application. Five publicly available benchmarks also used in OTG
[WLZ14] or kDet [WDZ17] are our test candidates. Note that in
each benchmark, we store the primitives of all objects in a single
BVH and employ a self collision detection scheme to search for
every AABB overlapping pair. No other optimizations are applied.
The experiments are conducted on both GTX780 and GTX1080. In
certain benchmarks marked with suffix *, their whole animations
consist of only a few frames and lack spatio-temporal coherence,
so we disable BVTT fronts in these tests and only perform collision
queries on our ordered BVH.

e Funnel (18.5K triangles): A piece of cloth is squeezed by a ball
and falls through the funnel.

e Cloth Ball (aka Whirling Cloth in kDef) (92K triangles): A
piece of cloth is draped over a rotating sphere.

e Flamenco (49K triangles): A female character dances a fla-
menco in a red dress with multiple layers of cloth.

e N-body* (146K triangles): Hundreds of spheres and five cones
collide in a cuboid space.

e Dragon* (252K triangles): A bunny bumps into a dragon and
breaks it into pieces.

To verify the effectiveness of our ordering and restructuring tech-
niques, we test the following five strategies.

1. Unordered curve. Constructs the BVH once, refits it in the rest
of the frames. Fronts are active without ordering.

2. Static curve. Constructs the BVH once, refits it in the rest of
the frames. Fronts are active and ordered.

3. Periodic curve. Replaces update fronts with generate fronts in
Strategy 2 every second cycle.

4. Restructure curve. Enables restructuring scheme on BVTT
fronts in addition to Strategy 2. Fronts are rebuilt/restructured
along with BVH restructuring.

5. Reference curve. Rebuilds BVHs and BVTT fronts (i.e. "gen-
erate fronts") every frame to retrieve the ideal quality.

Figure 8 demonstrates the CD performances of the above strate-
gies. We can see that front-based CD algorithms (i.e. update fronts,
preserve fronts, etc.) are significantly faster than BVH-based CD
(i.e. generate fronts), and applying our ordering scheme applied
on both BVH and BVTT front further brings considerable speedup
to front-based CD based on the comparison between an unordered
curve and a static curve.

Although our restructuring scheme has a relatively small effect
on the overall CD performance among these benchmarks, its re-
structure curve is smoother and steadier than its periodic curve.
It precisely detects degenerations and only performs restructur-
ing/reconstruction when necessary. Moreover, the quality of the re-
structured tree is comparable to the reconstructed one. Therefore
the restructure curve is faster than the periodic curve and more
robust than the static curve due to its adaptivity to degenerate situ-
ations.

(© 2018 The Author(s)
Computer Graphics Forum (©) 2018 The Eurographics Association and John Wiley & Sons Ltd.

WhirlingCloth Quality

[N

=——unordered = static periodic restructure =—reference

WhirlingCloth Performance
15

10
A
’ \//// =’/ :

. z"’..,../',_/'...f"._,*__,/\‘_-r/.—fj‘v“’/ "’/

=——unordered - static periodic

0

restructure =—reference

Figure 8: Five curves of five strategies for Whirling Cloth bench-
mark tested on GTX1080. The red circles indicate a BVH restruc-
turing event. Since the number of related front nodes are above the
threshold, the BVTT fronts at both events are reconstructed right
before further degenerations. The time interval between these two
events is small, so the benefits are unfortunately soon offset by their
overhead.

5.3. Comparison

The summary of performance comparison between several meth-
ods is shown in Figure 9. Both ordering and restructuring improve
the overall CD performance including the narrow phase (same im-
plementation as gProximity also used in [WLZ14] and [WDZ17]),
and our CD framework is thus generally faster than the other two
state-of-the-art spatial subdivision methods. The speedup is more
noticable compared to [TMLT11]. Even in benchmarks without
BVTT fronts, i.e. N-body and Dragon, our total CD time (includ-
ing the narrow phase) is comparable or superior to that of kDet
and OTG due to our ordered BVH. In other benchmarks where the
BVTT front is enabled, our CD scheme can adapt to BVH quality
degenerations during animations aided by our quality metric, thus
providing robustness to the overall system.

There are three benchmarks in which our method exhibits
marginal performance. In the benchmarks with suffix * (i.e. N-
body and Dragon), the overall performance benefits solely from
the BVH ordering. Since most primitives are uniformly distributed
in the scene, GPU workloads are balanced in OTG and kDet, while
in our algorithm each thread starts from a different leaf node lo-
cation and ends up searching all at the rightmost branch of the
BVH (see Figure 1), resulting in divergent workloads and slow-
down. The BVTT front is enabled in the ClothBall benchmark, yet
it results in insignificant speedup over OTG. According to Figure 8,
the performance is, on average, 1.7ms over the first 70 frames (on
GTX1080). Then the efficiency drops significantly during the last
few frames when the cloth twists around the ball. Besides the in-
crease in collisions, the inability of our scheme to adapt to such co-
herence changes affects the performance. In other benchmarks, our
scheme takes full advantage of coherence, and is therefore much
faster.



236 XinLei Wang & Min Tang & Dinesh Manocha & RuoFeng Tong / Efficient BVH-based Collision Detection Scheme with Ordering and Restructuring

Benchmark Triangles Tang’s Ours Speedup
(Frame Counts) x1,000 (ms) (ms) (times)
Flag (3000) 80+0 49.35 6.48 7.62
Sphere (4100) 66+1 33.66 4.92 6.84
Victor (1300) 54+104 14.57 2.77 5.26
DressBlue (525) 34+27 18.98 5.40 3.51

a) ARCSim Benchmarks broad-phase CD excluding BVH maintenance(Tesla k40c)

Benchmark Triangles OTG CCD Ours Speedup
(Frame Counts) x1,000 (ms) (ms) (times)
Funnel (500) 18 3.4 14 2.43
ClothBall (94) 92 9.2 6.0 1.53
Flamenco (506) 49 10.8 3.8 2.85
N-body*(76) 146 19.1 10.5 1.82

b) Standalone Benchmarks (GTX 780)

Benchmark Triangles kDet Ours Speedup
(Frame Counts) x1,000 (ms) (ms) (times)
Dragon* (16) 252 9.3 6.8 1.37
WhirlingCloth (94) 92 6.1 2.3 2.65
N-body*(76) 146 4.4 43 1.02
Funnel (500) 18 1.7 0.6 2.83

c) Standalone Benchmarks (GTX 1080)

Figure 9: Overall CD Performance. We disable BVTT fronts in
certain benchmarks marked with suffix * due to a lack of spatio-
temporal coherence. In other benchmarks, we use pipeline b or ¢ in
Figure 4.

The memory footprints of our method are due to BVHs and
BVTT fronts. When the number of primitives is 524288 and the
upper limit of BVTT front size is set to 12000000 (7000000 for the
internal front and 5000000 for the external front), the total amount
of memory overhead of our entire CD algorithm is approximately
900MB. However, the largest memory budget (from ClothBall)
among all standalone benchmarks is actually less than 700MB,
when the number of primitives is 100000. Although the memory
overhead is larger than the reported 512MB for a nine-level counter
octree plus 64MB for the type octree in OTG [WLZ14] and the
spatial hashing method kDet [WDZ17], it fits within the memory
capacity of commodity GPUs.

6. Discussions and Future Work

We present a BVH-based broad-phase collision detection frame-
work on GPU. It demonstrates a significant speedup over prior col-
lision detection algorithms due to our ordering scheme, as well
as adaptivity to performance-corelative degenerations due to our
novel quality metric and efficient restructuring operations. How-
ever, there are certain limitations in our scheme and room for im-
provement.

6.1. Discussions

Limitations: The inherent issue in our scheme is the large memory
consumption of BVTT fronts, especially for high resolution scenes.
Even though other techniques, e.g., normal cone [WLT*17], can
reduce redundant BVTT nodes to a certain degree, the problem is
only partially solved. This may limit its use in applications pro-
vided with a low memory budget.

Room for improvement: The metric currently used to decide re-
structuring and to pick out degenerated subtrees is entirely local
in terms of time. It performs well in smooth animations, but in
cases where motions are large, the benefit of restructuring may
soon be offset by the overhead of restructuring itself (see Figure 8).
It is a common challenge for restructuring to evaluate the trade-
off between operation overhead and resulting performance gain. In
such scenarios, the ideal timing of restructuring should be at crit-
ical events when a long-term deformation happens, e.g., inelastic
motions. Therefore in event-based simulations, the information of
events can also be utilized as a supplement to our metric for perfor-
mance guarantee.

Another defect is deciding whether the use of BVTT fronts
for collision detection is static throughout the whole animation.
Once the extent of spatio-temporal coherence quickly changes, our
scheme is not able to dynamically switch BVTT fronts on/off. Even
if the evaluation concludes that the pipeline should proceed with
BVTT fronts enabled, the fixed length of the maintenance cycle
(the length of preserve fronts loop in Figure 4) is not able to make
adjustments to such coherence variations.

Although the above issues have little negative impact on con-
sistently spatio-temporal coherent benchmarks, they may become
performance barriers and need managing for more general applica-
bility.

6.2. Future Work

Topology operators on models are not currently viable in our
GPU version of the ARCSim simulator. Even though we believe
our restructuring scheme can support topology changes by insert-
ing/deleting primitives, this feature is subject to the establishment
of mapping between previous and current primitives and thus has
not been realized yet. We intend to continue this work, and apply it
to a wider range of scenarios.

During research, we discovered that BVHs have recently been
a hot topic in the field of ray tracing. Several GPU-based restruc-
turing techniques aiming for higher ray throughput have been pro-
posed [KA13,DP15,BWWAI17]. The key difference between these
techniques and our method is the scale of structure for optimization,
i.e. their target of restructuring is treelets (local neighborhoods of
BVH nodes) and has a size limit. Moreover, treelet restructuring
has a controllable workload and is applicable to collision detection
as well. Meanwhile, the gap between collision detection and ray
tracing is closing because of BVH re-use. We expect to develop
a simulator that integrates both collision detection and ray tracing
based on BVHs in the near future.

Acknowledgements: We would like to thank the reviewers for
their constructive comments, Tongtong Wang and Zhongyuan
Liu for the assistance in the paper submission. All benchmarks
are from the UNC Dynamic Scene Benchmarks collection. The
project is supported in part by the National Key Research and
Development Program (2017YFB1002700), NSFC (61572423,
61572424, 61732015), the Science and Technology Project of
Zhejiang Province (2018C01080), and Zhejiang Provincial NSFC
(LZ16F020003). Dinesh Manocha is supported in part by the 1000
National Scholar Program of China and NSFC (61732015).

(© 2018 The Author(s)
Computer Graphics Forum (©) 2018 The Eurographics Association and John Wiley & Sons Ltd.



XinLei Wang & Min Tang & Dinesh Manocha & RuoFeng Tong / Efficient BVH-based Collision Detection Scheme with Ordering and Restructuring 237

References

[Apel4] APETREI C.: Fast and simple agglomerative LBVH construc-
tion. In Computer Graphics and Visual Computing (CGVC) (2014),
Borgo R., Tang W., (Eds.), The Eurographics Association. 3, 4, 5, 7,
8

[BWWA17] BENTHIN C., WOOP S., WALD 1., AFRA A. T.: Improved
two-level bvhs using partial re-braiding. In Proceedings of High Perfor-
mance Graphics (New York, NY, USA, 2017), HPG *17, ACM, pp. 7:1-
7:8. 10

[Dam07] DAMKIJZR J.: Stackless BVH collision detection for physical
simulation. 3,4, 5

[DP15] DOMINGUES L. R., PEDRINI H.: Bounding volume hierarchy
optimization through agglomerative treelet restructuring. In Proceedings
of the 7th Conference on High-Performance Graphics (New York, NY,
USA, 2015), HPG ’15, ACM, pp. 13-20. 2, 10

[DZPW15] Du P., ZHAO J.-Y., PAN W.-B., WANG Y.-G.: GPU ac-
celerated real-time collision handling in virtual disassembly. Journal of
Computer Science and Technology 30, 3 (2015), 511-518. 2

[ELO1] EHMANN S. A., LIN M. C.: Accurate and fast proximity queries
between polyhedra using convex surface decomposition. In Computer
Graphics Forum (2001), vol. 20, Wiley Online Library, pp. 500-511. 2

[Gar08] GARANZHA K.: Efficient clustered BVH update algorithm for
highly-dynamic models. In 2008 IEEE Symposium on Interactive Ray
Tracing (Aug 2008), pp. 123-130. 2

[GNRZ02] GUIBAS L., NGUYEN A., RUSSEL D., ZHANG L.: Collision
detection for deforming necklaces. In Proceedings of the Eighteenth
Annual Symposium on Computational Geometry (New York, NY, USA,
2002), SCG ’02, ACM, pp. 33-42. 2

[GS87] GOLDSMITH J., SALMON J.: Automatic creation of object hier-
archies for ray tracing. IEEE Computer Graphics and Applications 7, 5
(1987), 14-20. 1

[HSK*10] HEO J.-P., SEONG J.-K., KiM D., OTADUY M. A., HONG
J.-M., TANG M., YOON S.-E.: FASTCD: Fracturing-aware sta-
ble collision detection. In Proceedings of the 2010 ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation (Aire-la-
Ville, Switzerland, Switzerland, 2010), SCA ’10, Eurographics Associa-
tion, pp. 149-158. 2

[JPO4] JAMES D. L., PA1 D. K.: BD-tree: Output-sensitive collision de-
tection for reduced deformable models. In ACM SIGGRAPH 2004 Pa-
pers (New York, NY, USA, 2004), SIGGRAPH ’04, ACM, pp. 393-398.
2

[KA13] KARRAS T., AILA T.: Fast parallel construction of high-
quality bounding volume hierarchies. In Proceedings of the 5th High-
Performance Graphics Conference (New York, NY, USA, 2013), HPG
’13, ACM, pp. 89-99. 2, 10

[Kar12] KARRAS T.: Maximizing parallelism in the construction of
BVHs, octrees, and k-d trees. Eurographics Association, pp. 33-37. 2, 3

[KIS*12] KopTA D., IZE T., SPJUT J., BRUNVAND E., DAVIS A.,
KENSLER A.: Fast, effective BVH updates for animated scenes. In Pro-
ceedings of the ACM SIGGRAPH Symposium on Interactive 3D Graph-
ics and Games (New York, NY, USA, 2012), 13D ’12, ACM, pp. 197-
204. 2

[LAMO6] LARSSON T., AKENINE-MOLLER T.: A dynamic bounding
volume hierarchy for generalized collision detection. Computers &
Graphics 30, 3 (2006), 450 — 459. 2,7

[LC98] L1 T.-Y., CHEN J.-S.: Incremental 3d collision detection with
hierarchical data structures. In Proceedings of the ACM Symposium on
Virtual Reality Software and Technology (New York, NY, USA, 1998),
VRST "98, ACM, pp. 139-144. 2

[LGS*09] LAUTERBACH C., GARLAND M., SENGUPTA S., LUEBKE
D., MANOCHA D.: Fast BVH construction on GPUs. Computer Graph-
ics Forum 28, 2 (2009), 375-384. 1, 3

(© 2018 The Author(s)
Computer Graphics Forum (©) 2018 The Eurographics Association and John Wiley & Sons Ltd.

[MB90] MACDONALD J. D., BoOTH K. S.: Heuristics for ray tracing
using space subdivision. The Visual Computer 6,3 (1990), 153-166. 1

[NPK*10] NAH J.-H., PARK J.-S., KIM J.-W., PARK C., HAN T.-D.:
Ordered depth-first layouts for ray tracing. In ACM SIGGRAPH ASIA
2010 Sketches (New York, NY, USA, 2010), SA "10, ACM, pp. 55:1-
55:2.2

[NTO5] NIELS THRANE L. O. S.: A comparison of accelerating struc-
tures for GPU assisted ray tracing. Master’s thesis, University of Aarhus
(2005). 3

[OCSG07] OTADUY M. A., CHASSOT O., STEINEMANN D., GROSS
M.: Balanced hierarchies for collision detection between fracturing ob-
jects. In Virtual Reality Conference, 2007. VR’07. IEEE (2007), IEEE,
pp- 83-90. 2

[Sob05] SOBOTTKA G.: A.: Collision detection in densely packed fiber
assemblies with application to hair modeling. In In Conference on Imag-
ing Science, Systems and Technology: Computer Graphics, Las Vegas
(2005), CSREA Press, pp. 244-250. 2

[SPO10] SCHVARTZMAN S. C., PEREZ A. G., OTADUY M. A.: Star-
contours for efficient hierarchical self-collision detection. In ACM Trans-
actions on Graphics (TOG) (2010), vol. 29, ACM, p. 80. 2

[TMLT11] TANG M., MANOCHA D., LIN J., TONG R.: Collision-
streams: Fast GPU-based collision detection for deformable models. In
Symposium on Interactive 3D Graphics and Games (New York, NY,
USA, 2011), 13D ’11, ACM, pp. 63-70. 2,4, 6,9

[TMT10] TANG M., MANOCHA D., TONG R.: MCCD: Multi-core col-
lision detection between deformable models using front-based decom-
position. Graphical Models 72,2 (2010), 7-23. 3

[TTSD06] TrRoOPP O., TAL A., SHIMSHONI 1., DOBKIN D. P.: Tem-
poral coherence in bounding volume hierarchies for collision detection.
International Journal of Shape Modeling 12, 02 (2006), 159-178. 2, 3

[TWT*16] TANG M., WANG H., TANG L., TONG R., MANOCHA D.:
CAMA: Contact-aware matrix assembly with unified collision handling
for GPU-based cloth simulation. Computer Graphics Forum 35, 2
(2016), 511-521. 2,4, 8

[WDZ17] WELLER R., DEBOWSKI N., ZACHMANN G.: kdet: Parallel
constant time collision detection for polygonal objects. In Computer
Graphics Forum (2017), vol. 36, Wiley Online Library, pp. 131-141. 1,
9,10

[Well3] WELLER R.: New Geometric Data Structures for Collision De-
tection and Haptics, 2013;1; ed. Springer Verlag, DE, 2013. 1

[WLT*17] WANG T., LIU Z., TANG M., TONG R., MANOCHA D.: Effi-
cient and reliable self-collision culling using unprojected normal cones.
Computer Graphics Forum (2017), n/a—n/a. 2, 10

[WLZ14] WONG T. H., LEACH G., ZAMBETTA F.: An adaptive octree
grid for GPU-based collision detection of deformable objects. The Visual
Computer 30, 6 (2014), 729-738. 1,9, 10

[YCMO07] YoON S.-E., CURTIS S., MANOCHA D.: Ray tracing dy-
namic scenes using selective restructuring. In Proceedings of the
18th Eurographics Conference on Rendering Techniques (Aire-la-Ville,
Switzerland, Switzerland, 2007), EGSR’07, Eurographics Association,
pp. 73-84. 2

[YMO06] YOON S.-E., MANOCHA D.: Cache-efficient layouts of bound-
ing volume hierarchies. In Computer Graphics Forum (2006), vol. 25,
Wiley Online Library, pp. 507-516. 2





