
I-Cloth: Incremental Collision Handling for GPU-Based Interactive
Cloth Simulation

MIN TANG, Zhejiang University
TONGTONG WANG, Zhejiang University
ZHONGYUAN LIU, Zhejiang University
RUOFENG TONG, Zhejiang University
DINESH MANOCHA, University of Maryland at College Park
https://min-tang.github.io/home/ICloth/

(a) (b) (c) (d) (e)

(f)

(g)

Fig. 1. Benchmarks: Our novel GPU-based collision handling algorithm is used to simulate complex cloth with irregular shape and multiple layers at 2 − 8
fps on an NVIDIA GeForce GTX 1080. We observe 7 − 10X speedup over prior algorithms.

We present an incremental collision handling algorithm for GPU-based

interactive cloth simulation. Our approach exploits the spatial and temporal

coherence between successive iterations of an optimization-based solver

for collision response computation. We present an incremental continuous

collision detection algorithm that keeps track of deforming vertices and

combine it with spatial hashing. We use a non-linear GPU-based impact

zone solver to resolve the penetrations. We combine our collision handling

algorithm with implicit integration to use large time steps. Our overall

algorithm, I-Cloth, can simulate complex cloth deformation with a few

hundred thousand vertices at 2 − 8 frames per second on a commodity GPU.

We highlight its performance on different benchmarks and observe up to

7 − 10X speedup over prior algorithms.

CCS Concepts: • Computing methodologies → Physical simulation;
Collision detection;

Authors’ addresses: Min Tang, Zhejiang University, tang_m@zju.edu.cn; Tongtong

Wang, Zhejiang University, wtt923@zju.edu.cn; Zhongyuan Liu, Zhejiang University,

lzy_work@foxmail.com; Ruofeng Tong, Zhejiang University, trf@zju.edu.cn; Dinesh

Manocha, University of Maryland at College Park

https://min-tang.github.io/home/ICloth/, dm@cs.umd.edu.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

© 2018 Association for Computing Machinery.

0730-0301/2018/11-ART204 $15.00

https://doi.org/10.1145/3272127.3275005

Additional Key Words and Phrases: collision handling, impact zone, cloth

simulation, GPU

ACM Reference Format:
Min Tang, Tongtong Wang, Zhongyuan Liu, Ruofeng Tong, and Dinesh

Manocha. 2018. I-Cloth: Incremental Collision Handling for GPU-Based

Interactive Cloth Simulation. ACM Trans. Graph. 37, 6, Article 204 (Novem-

ber 2018), 10 pages. https://doi.org/10.1145/3272127.3275005

1 INTRODUCTION
Cloth simulation has been an active area of research in computer

graphics and physics-based modeling for more than three decades.

Most of the work has focused on accurate simulation based on

efficient techniques for time integration, collision detection, and

response computation. Many cloth simulation algorithms have been

implemented as part of computer-aided design and animation sys-

tems, though they are mainly used for offline or non-interactive

applications. At the same time, applications such as computer games,

virtual reality and virtual try-on systems need interactive simulation

capabilities.

Many techniques have been proposed to accelerate the perfor-

mance of cloth simulation. These include fast algorithms for col-

lision detection and response [Bridson et al. 2002; Harmon et al.

2008; Otaduy et al. 2009; Tang et al. 2018]. Furthermore, many of

these methods can be parallelized on commodity processors [Ni

et al. 2015; Tang et al. 2016]. However, state of the art methods can

take a few seconds per frame on a GPU for a high resolution cloth

ACM Trans. Graph., Vol. 37, No. 6, Article 204. Publication date: November 2018.

https://min-tang.github.io/home/ICloth/
https://min-tang.github.io/home/ICloth/
https://doi.org/10.1145/3272127.3275005
https://doi.org/10.1145/3272127.3275005

204:2 • M. Tang et al.

mesh. One of the major bottlenecks is collision handling, which can

take up to 70 − 80% of total frame time. This includes the detection

of all possible contacts and self-penetrations along with response

force computation. Moreover, current methods tend to use small

time steps to prevent deep penetrations and that reduces overall

performance.

MainResults:Wepresent an incremental collision handlingmethod

for cloth simulation. Our approach is based on impact zones and

exploits the spatial and temporal coherence between successive iter-

ations of the optimization algorithm. The major novel components

of our approach are:

• Incremental Continuous Collision Detection using Spatial Hash-
ing: Our approach exploits the fact that only a small set of

mesh vertices undergoes deformation due to response forces.

We keep track of deforming vertices and present high-level

and low-level GPU culling algorithms for incremental CCD

using spatial hashing (Section 3).

• GPU-based Non-Linear Impact Zone Solver:We present a novel

non-linear optimization algorithm to compute a penetration-

free state based on impact zones. Our approach is more robust

than prior impact zone algorithms and takes fewer iterations.

We also present an efficient scheme to parallelize on GPUs

(Section 4).

These two techniques are integrated to perform collision handling.

The improved accuracy of our non-linear solver allows us to choose

larger time steps and results in faster GPU-based cloth simulator (I-

Cloth).We have evaluated the performance on complex clothmeshes

with tens or hundreds of thousands of triangles on an NVIDIA

GeForce GTX 1080 (Section 5). Our algorithm can simulate all the

contacts in highly-deforming cloth at 2 − 8 frames per second. We

observe up to 10X improvement in the performance of the collision

handling. Moreover, I-Cloth offers up to 7X speedup over prior

GPU-based cloth simulators.

2 PRIOR WORK AND BACKGROUND
In this section, we give an overview of the prior work in collision

handling and cloth simulation.

2.1 Cloth Simulation
Many techniques have been proposed to improve the robustness

and efficiency of cloth simulation based on implicit Euler inte-

grators [Baraff and Witkin 1998], iterative optimization [Liu et al.

2013; Wang and Yang 2016], etc. Other methods use local and adap-

tive techniques to generate the dynamic detail of the simulated

cloth [Lee et al. 2010; Narain et al. 2012] or use data-driven ap-

proaches [de Aguiar et al. 2010; Kim et al. 2013; Wang et al. 2010].

2.2 Collision Handling
Collision detection and response are regarded as major bottlenecks

in cloth simulation. It is important to accurately detect all the colli-

sions, as a single missed collision may result in an invalid simulation

or noticeable artifacts [Bridson et al. 2002]. Most accurate meth-

ods for collision checking are based on exact CCD [Brochu et al.

2012; Provot 1997; Tang et al. 2014; Wang 2014]. Some of the com-

monly used techniques for collision response are based on impulse

(a)

(b)

Fig. 2. Interactive Cloth Manipulation by a User: (a) Human dressing:
We use the interactive capability of I-Cloth for tying a scarf by manipulating
the two corners around the neck (left). (b) Clothmanipulation: A user applies
forces by pulling the cloth at different locations. I-Cloth is able to compute
new configurations of the cloth at 8 − 10 fps on an NVIDIA GeForce GTX
1080 (see video).

computation [Bridson et al. 2002; Sifakis et al. 2008], constraint

solvers [Otaduy et al. 2009], and impact zone methods [Harmon

et al. 2008; Provot 1997]. There is extensive work on fast GPU-based

collision detection and proximity computation algorithms [Govin-

daraju et al. 2005; Sud et al. 2006; Tang et al. 2011]. An energy-based

method has been proposed by Zheng and James [2012] for self-

collision culling. Recently, elastoplastic friction models have been

used [Guo et al. 2018; Jiang et al. 2017] to handle challenging contact

scenarios, but they are slower. In this paper, we present improved

methods for incremental CCD computation and impact zone compu-

tation and combine them with implicit integrators. Asynchronous

contact mechanics methods [Ainsley et al. 2012; Vouga et al. 2011]

have also been used for cloth simulation and these methods can

provide robust handling at the cost of more computation.

2.3 Parallel Algorithms
To accelerate the performance, many parallel algorithms have been

proposed for faster collision detection on CPUs and GPUs [Pabst

et al. 2010; Selle et al. 2009; Tang et al. 2018]. Other approaches

exploit multiple CPU and/or GPU cores for faster time integration

and cloth simulation [Cirio et al. 2014; Ni et al. 2015; Tang et al. 2013,

2016; Wang et al. 2016]. Our approach is designed to perform the

entire simulation on a single GPU and exploits the high number of

cores for collision handling.

2.4 Simulation Pipeline
Notation: We assume that the objects in the scene and the cloth

mesh are composed of triangles. We use the symbols V, E and F to

represent a vertex, an edge, and a face of a triangle, respectively.

At any time instance, the entire cloth mesh Q is represented as

ACM Trans. Graph., Vol. 37, No. 6, Article 204. Publication date: November 2018.

Incremental Collision Handling for GPU-Based Interactive Cloth Simulation • 204:3

a point in a high-dimensional space: for an n-vertex mesh with

vertices X1,X2, ...,Xn ∈ R
3
, the configuration space is represented

as Q = R3n . The underlying mesh at time t is represented as Qt .

We use a triangle-mesh-based piece-wise linear elastic model

to simulate cloth with non-linear anisotropic deformations [Tang

et al. 2016; Wang et al. 2010]. We perform time integration using

the backward Euler method [Baraff and Witkin 1998] and incor-

porate internal forces (stretching forces and bending forces) and

external forces (gravity, wind forces, and repulsion/friction) into

time integration. We use a GPU-based matrix assembly [Tang et al.

2016] to construct the stiffness matrix during each frame, and use a

preconditioned conjugate gradient solver.

Our simulation algorithm consists of time integration, collision

detection, and collision response computation. We use well-known

implicit time integrationmethods alongwith contact forces [Bridson

et al. 2002; Otaduy et al. 2009] and combine them with an integrated

collision detection and response computation algorithm. We assume

that the initial state of the cloth mesh is penetration-free. At each

step, the overall simulation pipeline consists of the following stages:

Find

Penetration(s)

Proximity

Checking

Time

Integration

Penetration

Detection

Impact

Zone Solver

No Penetration

(1) ProximityChecking: compute proximity VF/EE constraints;

(2) Time Integration: perform implicit time integration with

internal/external forces and proximity constraints;

REPEAT:
(3) Penetration Detection: perform CCD to collect all the pen-

etrations; (Section 3)

(4) Impact Zone Solver: run the solver on GPU and resolve all

the detected penetrations; (Section 4)

UNTIL a new penetration-free state achieved.

These steps are performed at each time step. The impact zone

constraint-enforcement is performed in step (4), having been de-

coupled from time integration, i.e. step (2), and is similar to prior

collision response algorithms [Bridson et al. 2002; Harmon et al.

2008].

2.5 Proximity Constraints, Repulsive Forces, and Friction
For every VF/EE pair in proximity, we compute a repulsive force

based on the proximity distance. The repulsive force is distributed

among corresponding nodes [Bridson et al. 2002] and added to the

stiffness matrix. The proximity constraints are integrated into im-

plicit time integration [Otaduy et al. 2009; Tang et al. 2016]. We also

model static/kinetic friction based on repulsive forces [Bridson et al.

2002], which is based on the relative tangential velocity between a

VF/EE pair. We compute the repulsive force and the friction force at

the same time, and apply them to the stiffness matrix.

2.6 Collision Response
Without loss of generality, we assume that themesh has no collisions,

i.e. in a penetration-free state, at t = 0 (Q0). We compute a new

state (Q1) at t = 1 using implicit time integration. Next, we check

whether Q1 is penetration-free. If there are collisions, we compute

a penetration-free configuration Q ′
1
with minimal change in post-

response kinetic energy. This computation can be formulated as a

constrained optimization problem. The minimization function is

defined based on the vertices of Q1 and Q
′
1
:

min

∑i=n
i=1 (X

′
i − Xi)

2 ∗mi∑i=n
i=1 mi

, (1)

wheremi are the nodes’ mass. The constraints corresponding to a

non-penetration state of the mesh at a given time t are computed

based on the well-known vertex-face (VF) and edge-edge (EE) pairs

used for CCD computation [Provot 1997]:

Cvf = N ◦ [X4 − (α1X1 + α2X2 + α3X3], (2)

Cee = N ◦ [(α3X3 + α4X4) − (α1X1 + α2X2)], . (3)

For a VF pair, N (t) represents the triangle normal,X1(t),X2(t),X3(t)
are the vertices of the triangle and X4(t) represents the moving

vertex. α1 α2 and α3 are the barycentric coordinates of the projection
of X4(t) onto the plane spanned by the triangle. For an EE pair, N (t)
is the cross product of the two edges, where X1(t),X2(t) are the

vertices of one edge and X3(t),X4(t) are the vertices of the other
edge. α1, α2, α3 and α4 are the parametric values of corresponding

closest points on the first and second edge, respectively.

Impact Zone: Our collision response algorithm is based on com-

puting a penetration-free state using impact zones. An impact zone

(IZ) corresponds to a set of intersecting VF/EE pairs with shared ver-

tices. The underlying response algorithm groups all the intersecting

VF/EE pairs of Q1 into impact zones and computes a penetration-

free state Q ′
1
using an optimization algorithm. This optimization

problem can be reduced to solving a linear system with inelastic

projection [Harmon et al. 2008]. However, we observe that the result-

ing method can have stability issues and we propose an algorithm

based on non-linear gradient descent solver (see Section 4). This

process of collision checking and impact zone solving is repeated in

an iterative manner until the mesh is penetration-free.

3 INCREMENTAL CONTINUOUS COLLISION
DETECTION

A key aspect of cloth simulation is the accurate computation of

CCD. Given the state of a mesh at Q0 and Q1, the CCD algorithms

check for overlapping VF and EE pairs using linear interpolating

vertex positions between t = 0 and t = 1. Current algorithms for

CCD perform high-level culling using bounding volume hierarchies

(BVHs) or spatial hashing, followed by low-level culling and reliable

elementary tests between the VF and EE pairs [Tang et al. 2018,

2014; Wang 2014]. This CCD computation is performed repeatedly

on the refined mesh during iterative impact zone based collision

handling, till a penetration-free state is computed. In this section, we

present an incremental CCD algorithm that exploits the spatial and

temporal coherence between two successive iterations to reduce the

run-time cost. Between two successive iterations of the impact-zone

ACM Trans. Graph., Vol. 37, No. 6, Article 204. Publication date: November 2018.

204:4 • M. Tang et al.

Triangle Set T

1
2

3

4

5

6
7

9

10

11
12

8

13

14

2
3

12

8

5

6
8

13

3

4 7

9

11
12

12

13

2
3

5

6

...

2
3

5

6

1 4

7

9

10

11
12

8

13

14

2
3

5

6

3

4

3

4

High-level Culling

Low-level
Culling

Dynamic Triangle Set Td Static Triangle Set Ts

Iteration 1

Iteration 0

High-level Culling

Low-level
Culling

Fig. 3. Incremental CCD with Spatial Hashing:We decompose the tri-
angle set T into a Dynamic Triangle Set (Td) and a Static Triangle Set (TS)
and store them separately using spatial hashing. Our algorithm can skip
self-collision checking on TS and can be easily parallelized on GPUs.

algorithm, only some vertices of Q undergo deformation with a

small motion. As opposed to checking the entire mesh for collisions,

we restrict our tests to vertices ofQ that undergo some deformation

and accelerate the computations using spatial hashing.

In order to perform incremental CCD, we classify the set of tri-

angles into various sets. The Triangle Set (T) corresponds to all the

triangles in the scene. It includes the triangles ofQ and other objects

in the scene. During each iteration, we partition T into two sub-

sets depending on the collision status: a Dynamic Triangle Set (Td),
which consists of triangles that have at least one vertex involved

in colliding VF or EE pairs; and a Static Triangle Set (Ts), in which

none of the vertices of its triangles is involved in the colliding pairs.

We assume that the number of triangles inT (Nall) is fixed through-

out the simulation, while the sizes of Td and Ts change depending
on the number of collisions during each iteration. Let Nd and Ns
be the number of triangles in Td and Ts , respectively. If a mesh is

penetration-free, then Td = ∅ and Ts = T .
The overall approach is described in Algorithm 1. We initially

perform CCD computation on T using high-level and low-level

culling and dynamically compute the sets Td and Ts . This is illus-
trated in Fig. 3, where the resulting pairs of overlapping triangles

are (f2, f3) and (f5, f6). In this case,Td = { f2, f3, f5, f6},Ts contains
all the other triangles. Our algorithm adjusts the vertices of the over-

lapping triangles in Td to eliminate the penetrations using impact

zones, as described in Section 4. For the next iteration, we need to

perform two kinds of collision checks:

• Inter-object collisions between the triangles in Td and Ts .
• Self-collisions between the triangles in Td .

Mathematically, we reduce the worst-case intersection test complex-

ity from N 2

all to N
2

d +Nd ∗Ns and typically, Nd << Ns . We use the

following lemma to perform fewer intersection tests.

Incremental Collision Detection Lemma: Given the Triangle
Set T , we let the set of vertices corresponding to its colliding VF/EE
pairs be represented as Vc . T can be partitioned into Td and Ts based
on Vc : If a triangle f ∈ T has at least one vertex that belongs to Vc ,
then f ∈ Td ; otherwise, f ∈ Ts . If some vertices in Vc move, all the
triangles in Ts can not collide with each other.

Proof. Since the impact zone solver only adjusts the vertices in

Vc , all the vertices of the triangles ofTs remain unchanged. In other

words, if there is a triangle pair in Ts that collides, it must have a

vertex belong to Vc , and the resulting triangle(s) would belong to

Td . As a result, we prove the lemma by contradiction. □

Our collision handling algorithm only recomputes the new posi-

tions of the vertices of Vc with the impact zone solver and does not

need to perform self-collisions on Ts .

Algorithm 1 Incremental Collision Detection Algorithm

1: detect all the collisions among all the triangles T ;
2: while collisions are detected from the last step usingTd andTs

do
3: set flags for all the vertices in Vc , which is the set of all

vertices in the colliding VF/EE pairs;

4: based on flagged vertices, compute Td and Ts ;
5: perform CCD between Td and Ts ;
6: perform self-CCD among Td ;
7: end while

Our incremental CCD algorithm can be accelerated using BVHs

or spatial hashing. We use the GPU-based spatial hashing algo-

rithm [Pabst et al. 2010; Tang et al. 2018] for inter-object and intra-

object collision culling and filter out redundant collision tests by

maintaining the Td and Ts at each iteration. We first check for all

overlapping triangle pairs in T by performing high-level culling

with spatial hashing, followed by low-level culling, by checking

each pair if its two triangles both belong to Ts . If so, this triangle
pair will be culled. After performing the exact elementary tests, we

updateVc accordingly and set the flags for all the vertices inVc (Line
3 of Algorithm 1). Furthermore, we classify all the triangles in T as

Td or Ts based on these flags (Line 4 of Algorithm 1). During the

next iteration, the high and low-level culling techniques are applied

to these updated sets.

4 GPU-BASED NON-LINEAR IMPACT ZONE SOLVER
At each iterative stage of the collision handling algorithm, a penetration-

free state of Q is computed using impact zones. In this section, we

present a non-linear optimization algorithm for impact zones and

parallelize it on GPU architectures.

4.1 Gradient Descent Solver
The constrained optimization problems defined by Equations(1-3)

are transformed into an unconstrained problem by an augmented

Lagrangian method [Narain et al. 2012; Nocedal and Wright 2006].

For conciseness, we denote the minimization function in Equa-

tion (1) as д(X) and the inequality constraints in Equations (2-3) as

c∗(X), i.e., the set of all inequalities (Cvf ≥0 and Cee≥0) for all the

ACM Trans. Graph., Vol. 37, No. 6, Article 204. Publication date: November 2018.

Incremental Collision Handling for GPU-Based Interactive Cloth Simulation • 204:5

penetrating VF/EE pairs. The constrained optimization problems in

Section 2.3 can be expressed as:

minд(X) s .t . c(X) ≤ 0, (4)

where, c(X) = −c∗(X). The general augmented Lagrangian method

replaces c(X) with a combination of penalty functions ĉ(X , s) and
Lagrange multipliers λ, and changes our constrained optimization

problem into:

min {д(X) + λT ĉ(X , s) +
µ

2

| |ĉ(X , s)| |2}, (5)

where ĉ(X , s) = c(X) + s , s is a non-negative slack variable, and the

update rule of λ is given as:

λ← λ + µĉ(X).

µ is a parameter and we set µ = 10
3
in our benchmarks. We use the

method described in [Narain et al. 2012] to simplify this function

into

f (X) = д(X) +
µ

2

| |c̃(X)| |2 −
||λ | |2

2µ
, (6)

and the update rule is λ ← µc̃(X), where the new penalty function

c̃(X) = max(c(X) + λ
µ , 0). X and λ are updated alternately while

solving this unconstrained optimization problem. During each it-

eration, we first fix λ, then solve X by minimizing f (X) using an

enhanced gradient descent method, and then fix X to update λ.
The overall algorithm is described as Algorithm 2. For each impact

zone vertex, the overall solver consists of three steps: compute the

gradient descent direction, find an advancing time step to update

the optimization variable, and update the vertex position. We use

Jacobi preconditioning and Chebyshev acceleration [Wang and Yang

2016] to improve the convergence rate of gradient descent. The

advancing time step is computed by the backtracking line search

method [Nocedal and Wright 2006], which gradually reduces the

step length, until the Wolfe’s condition is satisfied:

f (X (k) − s(k)· △ X (k)) < f (X (k)) − α · s(k) · | | △ X (k) | |2, (7)

where f (X) is the objective function and α is a control parameter.

X (k), s(k), and △ X (k) are the variables, the step length, and the

gradient descent direction during the kth iteration, respectively. We

only update the vertices Xi ∈ Vc and update Td accordingly. In

our implementation, we use termination conditions based on the

number of maximum iterations (100) and the prescribed step length

threshold (10
−12

).

4.2 GPU-based Solver
Weexploit GPU parallelism to accelerate the performance of our non-

linear solver described in Algorithm 2. We update all the vertices

Xi ∈ Vc in an iterative manner to compute a penetration-free state.

We highlight the details of our parallel algorithm in Fig. 4 and Algo-

rithm 3. We use a thread block to handle each impact zone, i.e. each

optimization problem. Therefore, all the impact zones can be pro-

cessed in parallel. For each impact zone, we use an iterative scheme

until the VF/EE pairs for that impact zone are non-overlapping.

During each iteration, the whole solving process consists of three

steps (i.e. steps 1-3 in Fig. 4). We first use the threads in each block

to compute the descent direction for each vertex in parallel. Next

the thread with index 0 is used to update the step length. We use

Algorithm 2 CPU-based Non-Linear Impact Zone Solver

1: for each impact zone do
2: for each iterative step of gradient descent do
3: for each vertex in impact zone do
4: compute gradient descent direction, дi ;
5: end for
6: compute an appropriate step of gradient descent;

7: if step length is less than the prescribed threshold or

the number of iterations reaches the maximum then
8: break;

9: end if
10: evaluate the objective function values for vertex oi ;
11: for each vertex Xi in impact zone do
12: updateXi using the step length and gradient descent

direction;

13: update Xi using Chebyshev acceleration method;

14: end for
15: update Lagrange multipliers λ for all constraints;

16: end for
17: end for

backtracking line search [Nocedal and Wright 2006] as the step

adjustment scheme based on the values of objective functions in the

unconstrained optimization problem computed during the previous

step. We use atomic operations to ensure the accuracy and shared

memory structures to store step lengths and other parameters. If

Wolfe’s conditions during the backtracking line search scheme [No-

cedal and Wright 2006] are satisfied, then each vertex position is

updated in the next step using Chebyshev acceleration on a thread.

We use a scheme similar to [Wang 2015] to adjust the parameters

in the Chebyshev method:

Xi = (Xi − X
′
i) ∗ ω + X

′
i

, where Xi is adjusted vertex position, X ′i is its position at previous

time step, and ω is updated by the following equations:

ω =


1 if k < 10,

2/(2 − ρ2) if k = 10,

4/(4 − ρ2ω) if k > 10,

(8)

where k represent the number of iterations used in our impact zone

solver and ρ is 0.9992 in our benchmarks. Otherwise, we go back

to the first step of the iterative scheme until Wolfe’s condition is

satisfied. Overall, our approach exploits GPU parallelism for all

these computations.

4.3 Stability Analysis
Compared to the impact zone optimization based on a linear solver [Har-

mon et al. 2008], our non-linear solver demonstrates higher sta-

bility and accuracy. For some benchmarks (e.g., Funnel, Twisting

and Sphere), the linear solver fails when the cloth tangles. For

other benchmarks (e.g., Dress, Andy, and Bishop), the linear solver

takes many more iterations than our non-linear solver to reach

a penetration-free state. During the frame #1100 of Benchmark

Funnel (Fig. 10), our non-linear GPU solver takes 2.86ms and 34

ACM Trans. Graph., Vol. 37, No. 6, Article 204. Publication date: November 2018.

204:6 • M. Tang et al.

𝑿𝟎 𝑿𝟏 …… 𝑿𝒏−𝟏 𝑿𝒏

𝒐𝟎 𝒈𝟎 𝒐𝟏 𝒈𝟏 …… 𝒐𝒏−𝟏 𝒈𝒏−𝟏 𝒐𝒏 𝒈𝒏

𝑿𝟎
′ 𝑿𝟏

′ …… 𝑿𝒏−𝟏
′ 𝑿𝒏

′

𝒕𝒉𝟎

𝒕𝒉𝟎

𝒕𝒉𝟏

𝒕𝒉𝟏

𝒕𝒉𝒏−𝟏

𝒕𝒉𝒏−𝟏

𝒕𝒉𝒏

𝒕𝒉𝒏

……

……
𝒔

𝒕𝟎

𝑶,𝑮

Y
N 1

Block 1 ……

𝒔

Shared memory

Checking whether satisfies Wolfe’s condition in
backtracking line search

Reduction operation

2
3

Block 2

Fig. 4. Impact Zone Solving Pipeline: Each block is used to solve an
impact zone optimization problem. The whole computation consists of three
steps. X0 ...Xn and X ′

0
...X ′n represent the positions of the vertices before

and after updating. thi is the ith thread in a block. s is the step length and
o0 ...on, д0 ...дn are the objective function (based on Equation 1) values
and the gradient descent directions of all the vertices, represented asO and
G , respectively O is the total objective function value, and G is the sum of
the square of elements in all gradient descent directions. These two values
are used to check Wolfe’s condition.

iterations to resolve the penetrations. On the other hand, the linear

solver [Harmon et al. 2008] takes 174 iterations and 12.82ms.

The linear solver is based on elastic projection and assumes that

the post-response relative velocities are exactly zero. Based on this

assumption, the optimization problem can be approximated by a

linear system, but this can result in ’sticking’ artifacts [Harmon

et al. 2008]. Prior methods use many iterations of repulsive im-

pulses [Bridson et al. 2002] to prevent such sticking behaviors and

use an impact-zone solver at the end to reduce the impact of these

sticking artifacts on the response computations. In our approach, we

only use one pass of repulsive impulses, i.e. incorporate proximity

constraints into the implicit time integration to prevent the sticking

behavior, and mainly rely on the impact zone solver to resolve pen-

etrations. Overall, our non-linear GPU solver demonstrates better

accuracy and performance for collision response computation.

4.4 Timing and Convergence Analysis
Fig. 5 highlights the time spent and the number of iterations taken

by our GPU solver on the Andy benchmark ((a) and (b), time step

1/200s) and on the Funnel benchmark ((c) and (d), time step 1/100s).

As shown in the figure, the execution time is approximately pro-

portional to the number of iterations. In practice, our GPU solver

usually converges within 10 iterations for small time steps, even

for complex contact configurations. However, our GPU solver may

fail if the simulator chooses a large time step. A failure case is

shown in Fig. 7(a). Our solver cannot converge to a non-penetration

state when simulating the Dress benchmark with a large time step,

i.e. 1/20s. Even after 200 iterations, there are still 1002 unresolved

impacts. However, with a small time step, i.e. 1/50s, our method

can solve all the impacts using 57 iterations (Fig. 7(b)). In this case,

the number of impacts increases after 20 iterations. This can occur

Algorithm 3 GPU-based Non-Linear Impact Zone Solver

1: for each iteration do
2: for each vertex in impact zone parallel do
3: compute gradient descent direction;

4: end for
5: for each vertex in impact zone parallel do
6: compute objective function;

7: end for
8: if the index of thread is 0 then
9: adjust step length;

10: if Wolfe’s condition in line search is satisfied then
11: continue;

12: else go back to line 5;

13: end if
14: end if
15: if step length is less than the prescribed threshold or the

number of iterations reaches the maximum then
16: break;

17: end if
18: for each vertex in impact zone parallel do
19: corresponding thread updates the vertex using the step

length and descent direction;

20: end for
21: for each vertex in impact zone parallel do
22: corresponding thread updates the vertex using Cheby-

shev acceleration;

23: end for
24: parallel update Lagrange multipliers λ for each constraint;

25: end for

when the adjusted vertices trigger new penetrations with the sur-

rounding triangles, and this can expand the size of impacts. Usually,

the number of impacts decreases with more iterations. However,

when new penetrations occur and new triangles are inserted into

the impact zone, the number of impacts may increase and the re-

sponse algorithm may fail to converge to a penetration-free state.

Figure 6 highlights the number of iterations taken by our GPU solver

on the Andy benchmark (frames 1000 − 2000). All these iterations

are terminated when their step lengths are under our prescribed

threshold (10
−12

). Overall, our non-linear solver demonstrates better

convergence than prior linear solvers, though it is not guaranteed

to converge for large time steps.

5 IMPLEMENTATION AND PERFORMANCE

5.1 Implementation
We have implemented our collision handling algorithm as part of

cloth simulation approach (I-Cloth) on an NVIDIA GeForce GTX

1080 (with 2560 cores at 1.6 GHz and 8G memory). Our implemen-

tation uses CUDA toolkit 9.1 and Visual Studio 2013 as the underly-

ing development environment. We use a standard PC (Windows 7

Ultimate 64 bits/Intel I7 CPU@3.5G Hz/8G RAM) to evaluate perfor-

mance. We perform single-precision floating-point arithmetic for all

the computations on the GPU along with exact CCD computations.

ACM Trans. Graph., Vol. 37, No. 6, Article 204. Publication date: November 2018.

Incremental Collision Handling for GPU-Based Interactive Cloth Simulation • 204:7

0

2

4

6

8

10

12

1 4 7

10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97

10
0

10
3

10
6

10
9

11
2

11
5

11
8

12
1

12
4

12
7

13
0

13
3

13
6

13
9

14
2

14
5

14
8

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

1 4 7

1
0

1
3

1
6

1
9

2
2

2
5

2
8

3
1

3
4

3
7

4
0

4
3

4
6

4
9

5
2

5
5

5
8

6
1

6
4

6
7

7
0

7
3

7
6

7
9

8
2

8
5

8
8

9
1

9
4

9
7

10
0

10
3

10
6

10
9

11
2

11
5

11
8

12
1

12
4

12
7

13
0

13
3

13
6

13
9

14
2

14
5

14
8

0

1

2

3

4

5

6

7

8

9
1 4 7

1
0
1
3
1
6
1
9
2
2
2
5
2
8
3
1
3
4
3
7
4
0
4
3
4
6
4
9
5
2
5
5
5
8
6
1
6
4
6
7
7
0
7
3
7
6
7
9
8
2
8
5
8
8
9
1
9
4
9
7

1
0
0

1
0
3

1
0
6

1
0
9

1
1
2

1
1
5

1
1
8

1
2
1

1
2
4

1
2
7

1
3
0

1
3
3

1
3
6

1
3
9

1
4
2

1
4
5

1
4
8

1
5
1

1
5
4

1
5
7

1
6
0

1
6
3

1
6
6

1
6
9

1
7
2

1
7
5

1
7
8

1
8
1

1
8
4

1
8
7

1
9
0

1
9
3

1
9
6

1
9
9

2
0
2

2
0
5

2
0
8

2
1
1

2
1
4

2
1
7

2
2
0

2
2
3

2
2
6

2
2
9

2
3
2

2
3
5

2
3
8

2
4
1

2
4
4

2
4
7

2
5
0

2
5
3

2
5
6

2
5
9

2
6
2

2
6
5

2
6
8

2
7
1

2
7
4

2
7
7

2
8
0

2
8
3

2
8
6

2
8
9

2
9
2

2
9
5

2
9
8

3
0
1

3
0
4

3
0
7

3
1
0

3
1
3

3
1
6

3
1
9

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

1 4 7

1
0

1
3

1
6

1
9

2
2

2
5

2
8

3
1

3
4

3
7

4
0

4
3

4
6

4
9

5
2

5
5

5
8

6
1

6
4

6
7

7
0

7
3

7
6

7
9

8
2

8
5

8
8

9
1

9
4

9
7

1
0
0

1
0
3

1
0
6

1
0
9

1
1
2

1
1
5

1
1
8

1
2
1

1
2
4

1
2
7

1
3
0

1
3
3

1
3
6

1
3
9

1
4
2

1
4
5

1
4
8

1
5
1

1
5
4

1
5
7

1
6
0

1
6
3

1
6
6

1
6
9

1
7
2

1
7
5

1
7
8

1
8
1

1
8
4

1
8
7

1
9
0

1
9
3

1
9
6

1
9
9

2
0
2

2
0
5

2
0
8

2
1
1

2
1
4

2
1
7

2
2
0

2
2
3

2
2
6

2
2
9

2
3
2

2
3
5

2
3
8

2
4
1

2
4
4

2
4
7

2
5
0

2
5
3

2
5
6

2
5
9

2
6
2

2
6
5

2
6
8

2
7
1

2
7
4

2
7
7

2
8
0

2
8
3

2
8
6

2
8
9

2
9
2

2
9
5

2
9
8

3
0
1

3
0
4

3
0
7

3
1
0

3
1
3

3
1
6

3
1
9

0.04

0.08

0.12

Seconds

0.00

2

4

6

Iterations

0

1000 1201 1401 1601 1801 Frames

8

(a) (b)

0.02

0.04

0.06

Seconds

0.00

4

8

Iterations

0

900 1083 1266

10

(c) (d)

Benchmark Andy Benchmark Funnel

Frames1000 1201 1401 1601 1801 Frames

Benchmark Andy

900 1083 1266 Frames

Benchmark Funnel

Fig. 5. Timing and Converge Analysis: This figure highlights the time spent and the number of iterations taken by our GPU solver on the Andy benchmark
((a) and (b)) for frames 1000 − 2000 and the Funnel benchmark ((c) and (d)) for frames 900 − 1450. For most frames, our solver converges in a few iterations.

0

50

100

150

200

250

300

350

50

100

150

Iterations

0

1000 1201 1401 1601 1801 Frames

Benchmark Andy

200

250

300

350

Fig. 6. Gradient Descent Iterations: We highlight the number of itera-
tions taken by our GPU solver on the Andy benchmark (frames 1000− 2000).
All these iterations are terminated, when the their step lengths are under
our prescribed threshold (10−12). We use different colors to highlight the
maximum number of gradient descent iterations used in terms of solving
all impact zones (with Algorithm 3).

0

5k

10k

15k

20k

25k

30k

0 40 80 120 160 200

Impacts

0

150

300

450

600

750

900

0 20 40 60

Iterations

(a) Step = 1/20s (b) Step = 1/50s

Fig. 7. Failure Case Analysis: (a) highlights a failure case where our GPU
solver cannot converge to a non-penetration state when simulating the
Dress benchmark with a large time step, i.e., 1/20s. Even after 200 iterations,
there are still 1002 impacts unresolved. However, with a small time step, i.e.,
1/50s, our method can resolve all the impacts within 57 iterations (b).

Resolution Bench- Time

(triangles) marks Steps(s) CAMA PSCC I-Cloth PSCC I-Cloth

200K Sphere 1/200 0.35 1.06 1.95 0.790 0.285

200K Twistin

g

1/200 0.34 1.03 5.08 0.660 0.164

200K Funnel 1/100 0.60 2.33 8.47 0.353 0.066

127K Andy 1/200 0.27 1.19 3.73 0.689 0.177

90K Dress 1/100 0.28 0.92 6.06 0.774 0.073

215K Tiered 1/200 0.16 0.64 1.23 1.310 0.654

124K Bishop 1/100 0.31 1.06 4.46 0.743 0.148

Cloth Simulation (fps) Collsion Handling (s)

Fig. 8. Performance Comparison: This table shows the average perfor-
mance of different cloth simulators (the middle three columns) and collision
handling algorithm (the right two columns) for various benchmarks on an
NVIDIA GeForce GTX 1080. We observe considerable speedups over CAMA
and PSCC: up to 22X and 6.6X , respectively. Our incremental collision
handling module is about 10.6X faster than PSCC.

5.2 Benchmarks
We use many regular and irregular-shaped cloth meshes to evaluate

the performance (see video). These include three regular-shaped

cloth benchmarks:

• Funnel: Three pieces of cloth with a total of 200K triangles

fall into a funnel and fold to fit into the funnel (Fig. 1(e)).

• Twisting: Three pieces of cloth with a total of 200K triangles

twist severely as the underlying ball rotates (Fig. 1(f)).

• Sphere: Three pieces of hanging cloth with a total of 200K tri-

angles are hit by a forward/backwardmoving sphere (Fig. 1(g)).

These benchmarks contain many collisions. We also evaluate the

performance on 5 complex benchmarks used for garment simulation:

• Dress: A dancing lady wearing a skirt (with 90K triangles)

(Fig. 1(a)). We also manipulate this dress by a user applying a

force (Fig. 2(b)).

• Tiered: A lady wearing a ruffled, layered skirt with 215K
triangles (Fig. 1(b)).

• Andy: A boy wearing three pieces of clothing (with 127K
triangles) practicing Kung-Fu (Fig. 1(c)).

• Bishop: A swing dancer wearing three pieces of clothing

(with 124K triangles) (Fig. 1(d)).

• Scarf: A user ties a scarf (with 10K triangles) by applying the

forces at the ends (Fig. 2(b)). I-Cloth can compute the new

configurations at 8 − 10 fps.

ACM Trans. Graph., Vol. 37, No. 6, Article 204. Publication date: November 2018.

204:8 • M. Tang et al.

0

400

800

1200

1600

2000

Original Incremental

iteration 4

iteration 3

iteration 2

iteration 1

iteration 0

Fig. 9. Benefits of Incremental CCD: For a specific frame of Andy bench-
mark, four iterations are performed to compute a penetration-free state.
The left figure shows the number of bounding box overlap tests for a prior
CCD algorithm [Tang et al. 2018]. The right figure highlights the number of
overlap tests performed by our incremental CCD algorithm (Section 3). As
the number of iterations increases, the size of Td decreases and we observe
3.68X fewer overlap tests.

0

0 .5

1

1 .5

2

2 .5

3

3 .5

4

4 .5

5

1

18 35 52 69 86

10
3

12
0

13
7

15
4

17
1

18
8

20
5

22
2

23
9

25
6

27
3

29
0

30
7

32
4

34
1

35
8

37
5

39
2

40
9

42
6

44
3

46
0

47
7

49
4

51
1

52
8

54
5

56
2

57
9

59
6

61
3

63
0

64
7

66
4

68
1

69
8

71
5

73
2

74
9

76
6

78
3

80
0

系 列 1

系 列 2

0

0 .5

1

1 .5

2

2 .5

3

3 .5

4

4 .5

5

1

18 35 52 69 86

10
3

12
0

13
7

15
4

17
1

18
8

20
5

22
2

23
9

25
6

27
3

29
0

30
7

32
4

34
1

35
8

37
5

39
2

40
9

42
6

44
3

46
0

47
7

49
4

51
1

52
8

54
5

56
2

57
9

59
6

61
3

63
0

64
7

66
4

68
1

69
8

71
5

73
2

74
9

76
6

78
3

80
0

系 列 1

系 列 2

1000 1100 1200 1300

Seconds

PSCC

I-Cloth5

0

1

2

3

4

Frames

Fig. 10. Benefits of a GPU-based Impact Zone Solver: This figure
compares the time spent in collision handling module for some frames
(1000 − 1400) of the Funnel benchmark: our incremental collision handling
algorithm vs. PSCC, which is based on [Harmon et al. 2008]. Our approach
is faster and more robust in terms of handling deep penetrations.

5.3 Performance
Fig. 8 shows the mesh resolution, time step size and highlights

the run-time performance of I-Cloth on these benchmarks. We also

compare the performance of two recent GPU-based cloth simulation

methods: CAMA [Tang et al. 2016] and PSCC [Tang et al. 2018]. As

compared to PSCC, we observe up to 7X speedup using I-Cloth on

the same GPU. Collision handling in PSCC is performed using the

solver described in [Harmon et al. 2008].

Fig. 9 highlights the benefits of incremental CCD over state of

the art CCD algorithms. For a specific frame of Benchmark Andy,

four iterations are performed to compute a penetration-free state

of the cloth mesh. The left bar shows the number of bounding box

overlap tests in full CCD algorithm that also uses high and low-

level culling algorithms [Tang et al. 2018]. The right bar shows

the number of overlap tests performed by our incremental CCD

algorithm (Section 3).

s/frame

Fig. 11. Performance with different time steps: We evaluate the per-
formance of I-Cloth on the Dress benchmark by increasing the time step
size. Our non-linear solver can handle resulting deep penetrations and gen-
erate similar simulation results (see video) with about 2.5X performance
improvement.

Fig. 10 highlights the benefits of our GPU-based impact zone

solver. Compared with the response algorithm used in PSCC, we ob-

serve significant speedups for the frames corresponding to tangled

cloth with deep penetrations.

5.4 Large time steps
Prior cloth simulation algorithms tend to take smaller time steps to

prevent deep penetrations. In contrast, our non-linear GPU impact

zone solver allows us to take larger time steps and still compute

reliable collision response. Fig. 11 highlights the performance of

I-Cloth with different time steps for Benchmark Dress. With linearly

increasing time steps, we observe almost equal simulation quality

(see video for comparison), but the frame time only increases slightly.

This implies that we can use higher time steps to achieve better

overall performance. In Fig. 11, we obtain 1.76X and 2.73X speedups

with 2X and 4X larger time steps, respectively.

6 COMPARISON AND ANALYSIS
In this section, we compare the performance of our approach with

prior methods:

• Comparison with PSCC: Fig. 12 is a performance comparison

for Benchmark Andy between PSCC and I-Cloth. Compared

to PSCC, I-Cloth achieves 3.25X speedup on overall perfor-

mance; the peak speedup for a frame is 6.6X . The figure also

shows the running time ratios of different computing stages

of PSCC (left) and I-Cloth (right), respectively. These stages

are: time integration, broad phase testing (high-level culling),

narrow phase testing (low-level culling and exact elementary

tests), and penetration handling. As shown in the figure, pen-

etration handling is no longer the major efficiency bottleneck

of I-Cloth. We have provided more comparison and breakup

ratio figures for other benchmarks in the supplementary ma-

terials.

• Other Collision Detection Algorithms: Our incremental CCD

algorithm is a simple extension of recent BVH-based [Tang

et al. 2016] or Spatial Hashing-based [Fan et al. 2011; Pabst

et al. 2010; Tang et al. 2018] collision detection algorithms. Be-

sides impact zone-based penetration handling, our approach

ACM Trans. Graph., Vol. 37, No. 6, Article 204. Publication date: November 2018.

Incremental Collision Handling for GPU-Based Interactive Cloth Simulation • 204:9

0

0.5

1

1.5

2

2.5

3

1 11 21 31 41 51 61 71 81 91 101

0

0.5

1

1.5

2

2.5

3

1 11 21 31 41 51 61 71 81 91 101

0

0.1

0.2

0.3

0.4

0.5

0.6

1 11 21 31 41 51 61 71 81 91 101 111 121 131 141 151 161 171 181 191 201 211 221 231 241 251 261 271 281 291 301 311 321

Misc

Penetration Handling

Narrow Phase

Broad Phase

Time Integration

Seconds

1000 1201 1601 1801 20011401 1000 1201 1601 1801 20011401 Frames

0

1

2

3

PSCC I-Cloth

Fig. 12. Performance Comparison on Andy benchmark:We highlight the performance breakdown between time integration, CCD and collision response
for each frame. For deeper penetrations (frames #1100-1300), our collision handling algorithm achieves high-speedups (up to 9X), while the average speedup
in cloth simulation is 3.25X over all frames.

can also be used with adaptive remeshing [Narain et al. 2012]

by marking all the inserted or modified triangles in Td .

6.1 Convergence and Large Time Steps
Our non-linear impact zone solver enables use of larger time steps

as compared to prior methods. We observe improved convergence

in our benchmarks. However, for very large time steps our solver

may not converge, as shown in Fig. 6.

6.2 Overall Performance
Our reported FPS is based on the execution time of each step. We

have highlighted the time spent in each stage of the algorithm in

Fig. 12 (and in more figures in the supplementary material). Cur-

rently, penetration detection and impact zone solving take a large

fraction of the frame time.

6.3 Penetration Handling
As shown in Fig. 13, we compare the performance of the cloth

simulation using three different schemes on a simplified version of

benchmark Sphere:

• For case (a), implicit time integration without proximity con-

straints or an impact zone solver, we observe 1065 impacts

(VF/EE penetrations).

• For case (b), implicit time integration with proximity con-

straints only (no impact zone solver), we observe 62 impacts

or penetrations.

• For case (c), implicit time integration with proximity con-

straints and followed by our non-linear impact zone solver, a

penetration-free state is achieved.

As highlighted in the figure, without the use of our impact solver,

there are still penetrations or impacts after the integration step

is performed. Overall, we need to use a combination of proximity

constraints and our GPU-based non-linear impact zone solver to

handle the inter-object and intra-object penetrations effectively and

efficiently. This combination is more robust than prior collision

response methods based on impact zones.

7 CONCLUSION, LIMITATIONS, AND FUTURE WORK
We present an incremental collision handling algorithm for GPU-

based interactive cloth simulation. This includes an incremental

CCD algorithm that keeps track of overlapping primitives using a

dynamic data structure. and a non-linear impact zone solver. All

these computations are parallelized on a GPU and combined with

implicit time integration for interactive cloth simulation. Our re-

sulting system, I-Cloth, can simulate complex cloth mesh at almost

interactive rates, and we observe considerable speedups.

Our approach has some limitations. Our approach is mainly de-

signed for cases with complex contacts or deep penetrations. The

accuracy is governed by two main assumptions: linear interpo-

lating motion for CCD and collision response computation based

on impact zones. While our non-linear solver improves the accu-

racy, it is not guaranteed to converge with very deep penetrations

or complex contact configurations. Furthermore, we assume that

the proximity constraints in implicit time integration would pre-

vent the sticking behavior. We have provided supplementary ma-

terial (more benchmark timing data, video, API source code, etc.)

at https://min-tang.github.io/home/ICloth/ to encourage future re-

search in GPU-based cloth simulation.

There are many avenues for future research. In addition to over-

coming the limitations, we feel that it is possible to further improve

the performance by exploiting the memory hierarchy and caches to

improve the performance of CCD and impact zone solvers. It would

be useful to combine our method with accurate collision response

methods based on elastoplastic methods and use our incremental

CCD with other cloth simulation algorithms. It would be useful to

achieve interactive performance using multiple GPUs (e.g., 20fps).

ACKNOWLEDGEMENTS
This research is supported in part by NSFC (61732015, 61572423,

61572424, 61832016), the National Key R&D Program of China

(2017YFB1002703), the Science and Technology Project of Zhejiang

Province (2018C01080), and Zhejiang Provincial NSFC (LZ16F020003).

Dinesh Manocha is supported in part by NSF Grant 1547106 and

Intel. We would like to thank Xiaorui Chen for helping on the bench-

marks, and the reviewers’ constructive feedback and suggestions.

ACM Trans. Graph., Vol. 37, No. 6, Article 204. Publication date: November 2018.

https://min-tang.github.io/home/ICloth/

204:10 • M. Tang et al.

(a) (b) (c)

Fig. 13. Impacts:We compare the simulation results with implicit time integration without proximity constraints and impact zone solver (a), with proximity
constraints only (b), and with both proximity constraints and impact zone solver (c). There are 1065 impacts in (a), 62 impacts in (b), and no impact in (c).

REFERENCES
Samantha Ainsley, Etienne Vouga, Eitan Grinspun, and Rasmus Tamstorf. 2012. Specu-

lative parallel asynchronous contact mechanics. ACM Trans. Graph. 31, 6, Article
151 (Nov. 2012), 8 pages.

David Baraff and Andrew Witkin. 1998. Large steps in cloth simulation. In Proceed-
ings of the 25th annual conference on Computer graphics and interactive techniques
(SIGGRAPH ’98). ACM, New York, NY, USA, 43–54.

Robert Bridson, Ronald Fedkiw, and JohnAnderson. 2002. Robust treatment of collisions,

contact and friction for cloth animation. ACM Trans. Graph. (SIGGRAPH) 21, 3 (July
2002), 594–603.

Tyson Brochu, Essex Edwards, and Robert Bridson. 2012. Efficient geometrically exact

continuous collision detection. ACM Trans. Graph. (SIGGRAPH) 31, 4, Article 96
(July 2012), 7 pages.

Gabriel Cirio, Jorge Lopez-Moreno, David Miraut, and Miguel A. Otaduy. 2014. Yarn-

level Simulation of Woven Cloth. ACM Trans. Graph. (SIGGRAPH Asia) 33, 6, Article
207 (Nov. 2014), 11 pages.

Edilson de Aguiar, Leonid Sigal, Adrien Treuille, and Jessica K. Hodgins. 2010. Stable

spaces for real-time clothing. ACM Trans. Graph. (SIGGRAPH) 29, Article 106 (July
2010), 9 pages. Issue 4.

Wenshan Fan, Bin Wang, Jean–Claude Paul, and Jiaguang Sun. 2011. A Hierarchical

Grid Based Framework for Fast Collision Detection. Computer Graphics Forum 30, 5

(2011), 1451–1459.

Naga K. Govindaraju, Ming C. Lin, and Dinesh Manocha. 2005. Quick-CULLIDE: Fast

Inter- and Intra-Object Collision Culling Using Graphics Hardware. In IEEE Virtual
Reality Conference 2005, VR 2005, Bonn, Germany, March 12-16, 2005. 59–66.

Qi Guo, Xuchen Han, Chuyuan Fu, Theodore Gast, Rasmus Tamstorf, and Joseph Teran.

2018. A Material Point Method for Thin Shells with Frictional Contact. ACM Trans.
Graph. 37, 4 (2018), 147:1–147:15.

David Harmon, Etienne Vouga, Rasmus Tamstorf, and Eitan Grinspun. 2008. Robust

Treatment of Simultaneous Collisions. ACM Trans. Graph. (SIGGRAPH) 27, 3, Article
23 (Aug. 2008), 4 pages.

Chenfanfu Jiang, Theodore Gast, and Joseph Teran. 2017. Anisotropic Elastoplasticity

for Cloth, Knit and Hair Frictional Contact. ACM Trans. Graph. 36, 4, Article 152
(July 2017), 14 pages.

Doyub Kim, Woojong Koh, Rahul Narain, Kayvon Fatahalian, Adrien Treuille, and

James F. O’Brien. 2013. Near-exhaustive Precomputation of Secondary Cloth Effects.

ACM Trans. Graph (SIGGRAPH). 32, 4, Article 87 (July 2013), 8 pages.

Yongjoon Lee, Sung-Eui Yoon, Seungwoo Oh, Duksu Kim, and Sunghee Choi. 2010.

Multi-Resolution Cloth Simulation. Comp. Graph. Forum (Pacific Graphics) 29, 7
(2010), 2225–2232.

Tiantian Liu, Adam W. Bargteil, James F. O’Brien, and Ladislav Kavan. 2013. Fast

Simulation of Mass-Spring Systems. ACM Trans. Graph. (SIGGRAPH Asia) 32, 6
(Nov. 2013), 209:1–7.

Rahul Narain, Armin Samii, and James F. O’Brien. 2012. Adaptive anisotropic remeshing

for cloth simulation. ACM Trans. Graph. (SIGGRAPH Asia) 31, 6, Article 152 (Nov.
2012), 10 pages.

Xiang Ni, L.V. Kale, and R. Tamstorf. 2015. Scalable Asynchronous Contact Mechanics

Using Charm++. In IEEE Parallel and Distributed Processing Symposium (IPDPS).
677–686.

Jorge Nocedal and Stephen J. Wright. 2006. Numerical Optimization (second ed.).

Springer, New York, NY, USA.

Miguel A. Otaduy, Rasmus Tamstorf, Denis Steinemann, and Markus Gross. 2009.

Implicit Contact Handling for Deformable Objects. Computer Graphics Forum 28, 2

(2009), 559–568.

Simon Pabst, Artur Koch, and Wolfgang Straßer. 2010. Fast and Scalable CPU/GPU

Collision Detection for Rigid and Deformable Surfaces. Comp. Graph. Forum 29, 5

(2010), 1605–1612.

Xavier Provot. 1997. Collision and Self-collision Handling in Cloth Model Dedicated to

Design Garments. In Graphics Interface. 177–189.
Andrew Selle, Jonathan Su, Geoffrey Irving, and Ronald Fedkiw. 2009. Robust High-

Resolution Cloth Using Parallelism, History-Based Collisions, and Accurate Friction.

IEEE Trans. Vis. Comp. Graph. 15, 2 (March 2009), 339–350.

Eftychios Sifakis, Sebastian Marino, and Joseph Teran. 2008. Globally coupled collision

handling using volume preserving impulses. In Proceedings of the 2008 ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation. Eurographics Association,
147–153.

Avneesh Sud, Naga Govindaraju, Russell Gayle, Ilknur Kabul, and Dinesh Manocha.

2006. Fast proximity computation among deformable models using discrete Voronoi

diagrams. ACM Trans. Graph. (SIGGRAPH) 25, 3 (July 2006), 1144–1153.

Min Tang, Zhongyuan Liu, Ruofeng Tong, and Dinesh Manocha. 2018. PSCC: Parallel

Self-Collision Culling with Spatial Hashing on GPUs. Proceedings of the ACM on
Computer Graphics and Interactive Techniques 1, 1 (2018), 18:1–18.

Min Tang, Dinesh Manocha, Jiang Lin, and Ruofeng Tong. 2011. Collision-Streams: Fast

GPU-based collision detection for deformable models. In Proceedings of I3D. 63–70.
Min Tang, Ruofeng Tong, Rahul Narain, Chang Meng, and Dinesh Manocha. 2013. A

GPU-based Streaming Algorithm for High-Resolution Cloth Simulation. Comp.
Graph. Forum (Pacific Graphics) 32, 7 (2013), 21–30.

Min Tang, Ruofeng Tong, Zhendong Wang, and Dinesh Manocha. 2014. Fast and Exact

Continuous Collision Detection with Bernstein Sign Classification. ACM Trans.
Graph. (SIGGRAPH Asia) 33 (November 2014), 186:1–186:8. Issue 6.

Min Tang, Huamin Wang, Le Tang, Ruofeng Tong, and Dinesh Manocha. 2016. CAMA:

Contact-Aware Matrix Assembly with Unified Collision Handling for GPU-based

Cloth Simulation. Computer Graphics Forum (Proceedings of Eurographics 2016) 35, 2
(2016), 511–521.

Etienne Vouga, David Harmon, Rasmus Tamstorf, and Eitan Grinspun. 2011. Asynchro-

nous variational contact mechanics. Computer Methods in Applied Mechanics and
Engineering 200 (June 2011), 2181–2194.

Huamin Wang. 2014. Defending Continuous Collision Detection Against Errors. ACM
Trans. Graph. (SIGGRAPH) 33, 4, Article 122 (July 2014), 10 pages.

Huamin Wang. 2015. A chebyshev semi-iterative approach for accelerating projective

and position-based dynamics. ACM Transactions on Graphics (TOG) 34, 6 (2015),
246.

Huamin Wang, Florian Hecht, Ravi Ramamoorthi, and James O’Brien. 2010. Example-

based wrinkle synthesis for clothing animation. ACM Trans. Graph. (SIGGRAPH) 29,
4, Article 107 (July 2010), 8 pages.

Huamin Wang and Yin Yang. 2016. Descent Methods for Elastic Body Simulation on

the GPU. ACM Trans. Graph. 35, 6, Article 212 (Nov. 2016), 10 pages.
Zhendong Wang, Tongtong Wang, Min Tang, and Ruofeng Tong. 2016. Efficient and

robust strain limiting and treatment of simultaneous collisions with semidefinite

programming. Computational Visual Media 2, 2 (Jun 2016), 119–130.

Changxi Zheng and Doug L. James. 2012. Energy-based Self-Collision Culling for Arbi-

trary Mesh Deformations. ACM Transactions on Graphics (Proceedings of SIGGRAPH
2012) 31, 4 (Aug. 2012), 98:1–98:12.

ACM Trans. Graph., Vol. 37, No. 6, Article 204. Publication date: November 2018.

	Abstract
	1 Introduction
	2 Prior Work and Background
	2.1 Cloth Simulation
	2.2 Collision Handling
	2.3 Parallel Algorithms
	2.4 Simulation Pipeline
	2.5 Proximity Constraints, Repulsive Forces, and Friction
	2.6 Collision Response

	3 Incremental Continuous Collision Detection
	4 GPU-based Non-linear Impact zone Solver
	4.1 Gradient Descent Solver
	4.2 GPU-based Solver
	4.3 Stability Analysis
	4.4 Timing and Convergence Analysis

	5 Implementation and Performance
	5.1 Implementation
	5.2 Benchmarks
	5.3 Performance
	5.4 Large time steps

	6 Comparison and Analysis
	6.1 Convergence and Large Time Steps
	6.2 Overall Performance
	6.3 Penetration Handling

	7 Conclusion, Limitations, and Future Work
	References

